

MILWAUKIE PLANNING

6101 SE Johnson Creek Blvd Milwaukie OR 97206 503-786-7630 planning@milwaukieoregon.gov

Application for Land Use Action

Master File #: __

		Review type*: \square I \square III \square III \square IV \square V
CHECK ALL APPLICATION TYPES THAT APPLY:		
→ Amendment to Maps and/or	☐ Land Division:	☐ Residential Dwelling:
Ordinances:	☐ Final Plat	☐ Accessory Dwelling Unit
☐ Comprehensive Plan Text Amendment	Lot Consolidation	☐ Duplex
☐ Comprehensive Plan Map	Partition	■ Manufactured Dwelling Park
Amendment	Property Line Adjustment	□ Temporary Dwelling Unit
Zoning Text Amendment	□ Replat	☐ Sign Review
Zoning Map Amendment	Subdivision	Transportation Facilities Review
☐ Code Interpretation	■ Miscellaneous:	☐ Variance:
☐ Community Service Use	Barbed Wire Fencing	■ Use Exception
☐ Conditional Use	■ Mixed Use Overlay Review	□ Variance
■ Development Review	■ Modification to Existing Appro	oval Willamette Greenway Review
☐ Director Determination	■ Natural Resource Review**	Other:
■ Downtown Design Review	■ Nonconforming Use Alteration	☐ Use separate application forms for:
■ Extension to Expiring Approval	☐ Parking:	Annexation and/or Boundary Change
Historic Resource:	Quantity Determination	 Compensation for Reduction in Property
☐ Alteration	Quantity Modification	 Value (Measure 37)
Demolition	Shared Parking	Daily Display Sign
Status Designation	Structured Parking	 Appeal
☐ Status Deletion	Planned Development	
PESPONSIRIE PARTIES:		

APPLICANT (owner or other eligible applicar	il—see reverse): ••••ii	madotnos
Mailing address:		State/Zip:
Phone(s):	Email:	
Please do not includem y contact	information on public not	ices or on the City website:
APPLICANT'S REPRESENTATIVE (if different the	an above):	
Mailing address:		State/Zip:
Phone(s):	Email:	
SITE INFORMATION:		
Address: 2908 SE Olsen St, Milwaukie,	OR 97233 _{Map & Tax}	Lot(s): 11E25CA00100
Comprehensive Plan Designation: LD	Zoning: R-7	Size of property: .26 Acres
PROPOSAL (describe briefly):		
Placing a detached ADU, modular hom	е	

Wolf Industries

SIGNATURE:

ATTEST: I am the property owner or I am eligible to initiate this application per Milwaukie Municipal Code (MMC) Subsection 19.1001.6.A. If required, I have attached written authorization to submit this application. To the best of my knowledge, the information provided within this application package is complete and accurate.

Submitted by:

9/1/2020

IMPORTANT INFORMATION ON REVERSE SIDE

WHO IS ELIGIBLE TO SUBMIT A LAND USE APPLICATION (excerpted from MMC Subsection 19.1001.6.A):

Type I, II, III, and IV applications may be initiated by the property owner or contract purchaser of the subject property, any person authorized in writing to represent the property owner or contract purchaser, and any agency that has statutory rights of eminent domain for projects they have the authority to construct.

Type V applications may be initiated by any individual.

PREAPPLICATION CONFERENCE:

A preapplication conference may be required or desirable prior to submitting this application. Please discuss with Planning staff.

REVIEW TYPES:

This application will be processed per the assigned review type, as described in the following sections of the Milwaukie Municipal Code:

- Type I: Section 19.1004
- Type II: Section 19.1005
- Type III: Section 19.1006
- Type IV: Section 19.1007
- Type V: Section 19.1008

**Note: Natural Resource Review applications may require a refundable deposit. Deposits require completion of a Deposit Authorization Form, found at www.milwaukieoregon.gov/building/deposit-authorization-form.

THIS SECTION FOR OFFICE USE ONLY:

FILE TYPE	FILE NUMBER	AMOUNT (after discount, if any)	PERCENT DISCOUNT	DISCOUNT TYPE	DATE STAMP
Master file		\$			
Concurrent application files		\$			ş
		\$			5
		\$			
		\$			
Deposit (NR only)				☐ Deposit Autho	orization Form received
TOTAL AMOUNT RE	CEIVED: \$		RECEIPT #:		RCD BY:
Associated applic	cation file #s (ap	peals, modificat	ions, previous a	pprovals, etc.):	
Neighborhood Di	istrict Associatio	n(s):			
Notes:					

MILWAUKIE PLANNING
6101 SE Johnson Creek Blvd
Milwaukie OR 97206
503.786.7630
planning@milwaukieoregon.gov

Accessory Dwelling Units: Detached

This handout summarizes the accessory dwelling unit (ADU) regulations for residential properties in the city of Milwaukie. Please refer to Milwaukie Municipal Code (MMC) Subsection 19.910.1. ADUs are allowed in all residential zones. ADUs must follow all of the zoning requirements of the residential zone they are located in, as well as the additional requirements in MMC Subsection 19.910.1.

Definition of Accessory Dwelling Unit

- An "accessory dwelling unit" is a second dwelling unit on a lot with a single-family detached dwelling. An ADU is incidental to, and smaller than, the main dwelling unit. An ADU can either be part of the main structure, attached to the main structure, or detached.
- 2. The City has different regulations based on whether it is attached or not.
- 3. An ADU includes areas and equipment for sleeping, cooking, and sanitation (bathrooms and toilets). A structure without these areas and equipment is an "accessory structure," not an ADU, and is subject to the provisions of MMC Section 19.502 Accessory Structures.

Standards for All ADUs

- 1. The primary use on the property must be a single-family detached house, and it must be used as a dwelling.
- 2. One ADU is allowed per lot.
- 3. An ADU is limited to the lesser of 800 sq ft or 75% of the floor area of the main structure.
- 4. A new ADU requires a preapplication conference with City staff.

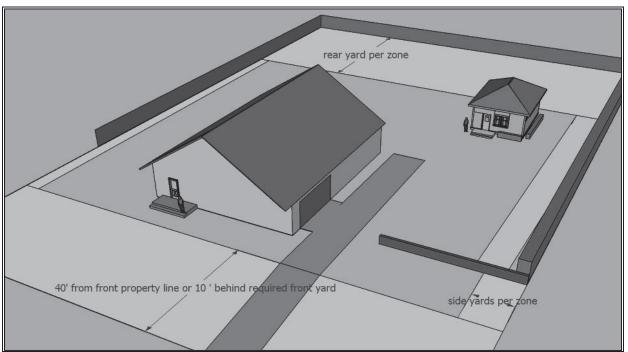
Review and Approval of Detached ADUs

There are two review processes for ADUs, depending on the size of the unit.

Footprint, Height, and Required Yards for Detached Accessory Dwelling Units								
Level of Review	Type I	Туре II						
Maximum Structure Footprint	600 sq ft	800 sq ft						
Maximum Structure Height	15 feet, limited to 1 story 25 feet, limited to 2 stori							
Required Side and Rear Yard	Base zone requirement for side and rear yard	5 feet						
Required Front Yard	10 feet behind front yard as defined in Section 19.201, unless located at least 40 feet from the front lot line.							
Required Street Side Yard	Base zone requirement for stree	t side yard						

Type I review is a staff-level review to ensure that the proposal meets all applicable codes and requirements. This is often called an "as-of-right" or "permitted outright" type of review. The review time and cost are less than what is required for a Type II review.

ADUs greater than the Type I review thresholds will be reviewed through a Type II review process. In addition to a staff-level review, to ensure that the proposal meets all relevant codes and requirements, this type of application requires a public posting on the site and notification to all properties within 300 ft of the subject property and a comment period. The final decision on the application is made by the Planning Director.

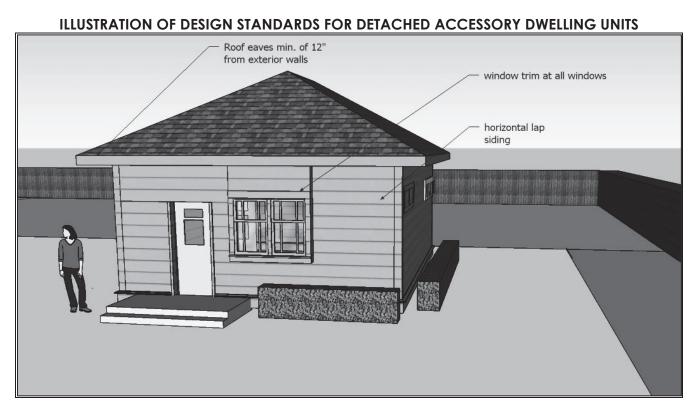

Development Standards for Detached ADUs

ADUs that are detached (a separate structure) from the primary residence must meet the development standards outlined in Table 1, below.

TABLE 1. DEVELOPMENT STANDARDS FOR DETACHED ACCESSORY DWELLING UNITS

	Allowed	by Code	Subject Property		Comments
Requirement	Type I	Type II	Requirements	Proposed	Staff Use Only
Maximum Lot Coverage ¹ Minimum Landscaped Area ¹	Same as base zone		30%	20%	
Setbacks: Front Property Line	10 ft behind required front yard or 40 ft from front lot line		20	91'	
Setbacks: Street Side Property Line	Same as base zone		5 & 10	5	
Setbacks: Rear and Side Property Lines	Same as base zone 5 ft min.			20' & 5'	
Maximum Allowed Floor Area	800 sq ft or 75% of main dwelling, whichever is less		1,448	616 SF	
Building Height of detached ADU ²	15 ft 1-story max.	25 ft 2-story max.	15' max	13'	

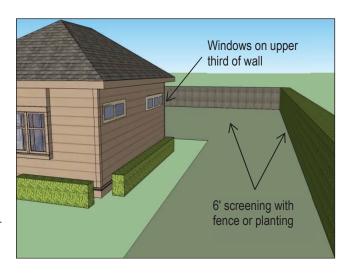
- 1. See Zoning Worksheets for requirements.
- 2. See page 4 of this handout for how to measure building height.


Required Design Elements for Detached ADUs

Detached ADUs must include at least 2 of the design details from Table 2, below. Yurts are allowed as detached ADUs and are exempt from this requirement, but they must meet all other ADU regulations and building codes (see MMC Subsection 19.910.4.b).

TABLE 2. DESIGN STANDARDS FOR DETACHED ACCESSORY DWELLING UNITS

Requirement	Required by Code	Existing	Proposed	Comments Staff Use Only
Minimum roof pitch if floor- to-ceiling height is 9 ft or more ¹	4" rise for every 12" of run (4/12 pitch)		6/12	
Privacy standard (for walls within 20 ft of adjacent residential property line)	All windows placed on upper 1/3 of wall, OR 6 ft visual screening	existing fence	existing fence	
All detached ADUs shall inclu	de at least 2 of the following (cl	neck at least 2):		
Covered porch	5 ft min. depth			
Recessed entry	2 ft min. from exterior wall to door			
Roof eaves	12" min. projection			
Horizontal lap siding	Siding between 3-7" wide	Х	Х	
Window trim at all windows	3" wide and 5/8" deep	Х	Х	


^{1.} A minimum 4/12 roof pitch is required for an accessory structure greater than 10 ft and for ADUs with a floor-to-ceiling height greater than 9 ft.

Privacy Standards for Detached ADUs

If a detached ADU has a wall within 20 ft of a side or rear lot line of an adjacent residential property and is a 45-degree angle or less to the property line, at least one of the following privacy standards are required.

- 1. All windows on the wall shall be placed in the upper third of the distance between floor and ceiling.
- 2. Opaque visual screening with a minimum height of 6 ft is required along the property line next to the wall of the ADU. Screening may consist of a fence, wall, or evergreen shrubs. If newly planted shrubs are used, they must be at least 5 ft above grade at time of planting, and they must reach 6 ft high within one year. Existing features of the site may be used to meet this requirement.

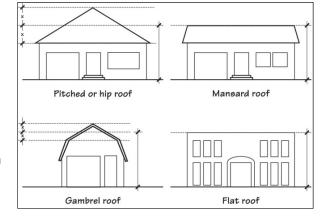
Converting an Existing Accessory Structure into a Detached ADU

An existing structure can be converted to a detached ADU subject to the following standards.

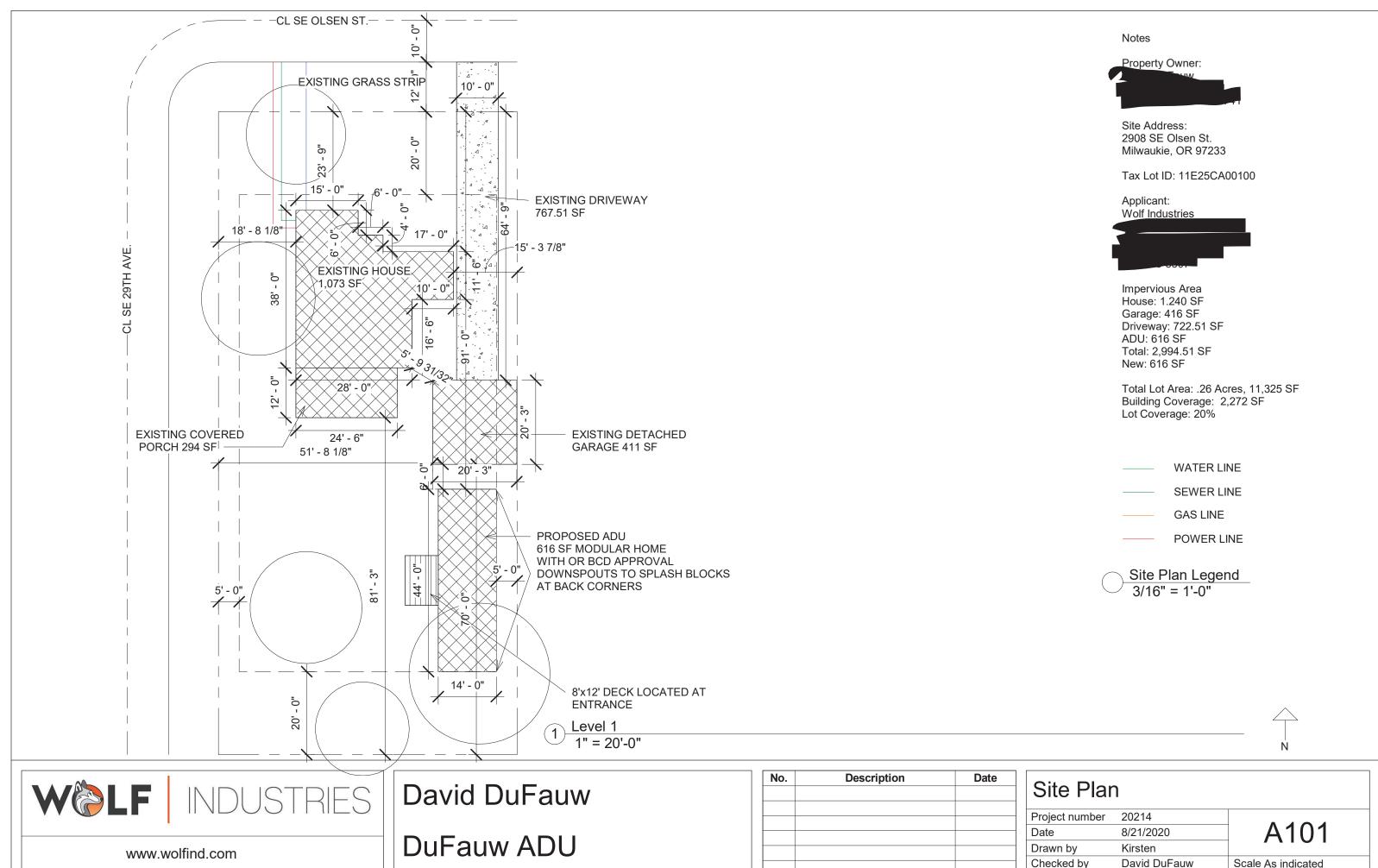
- If the existing accessory structure was created on or after December 1, 2012, it must meet all applicable standards for a new detached ADU.
- If the existing accessory structure was created before December 1, 2012, it must meet all applicable standards for a new detached ADU except for the design standards listed in Table 2 above. However, the conversion must not bring the accessory structure out of conformance, or further out of conformance, with any of the design standards listed in Table 2.

Other Requirements

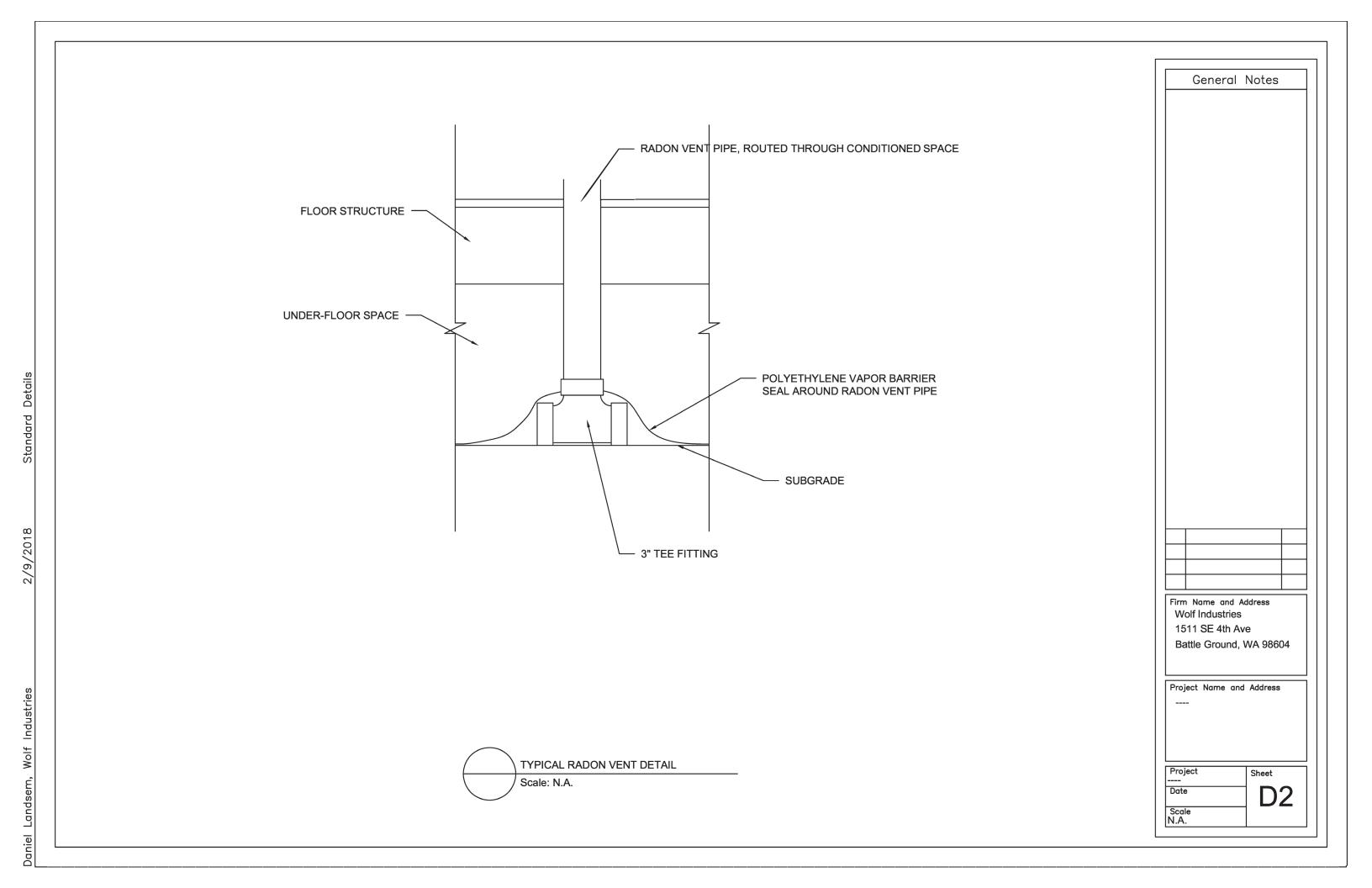
A new dwelling unit within the city must also meet all applicable building codes and engineering requirements, which may include system development charges (SDCs) and street frontage improvements. Please be sure to contact these departments for applicable requirements. The Building Division can be contacted at 503-786-7623 or building@milwaukieoregon.gov, and the Engineering Department can be contacted at 503-786-7609 or engineering@milwaukieoregon.gov.

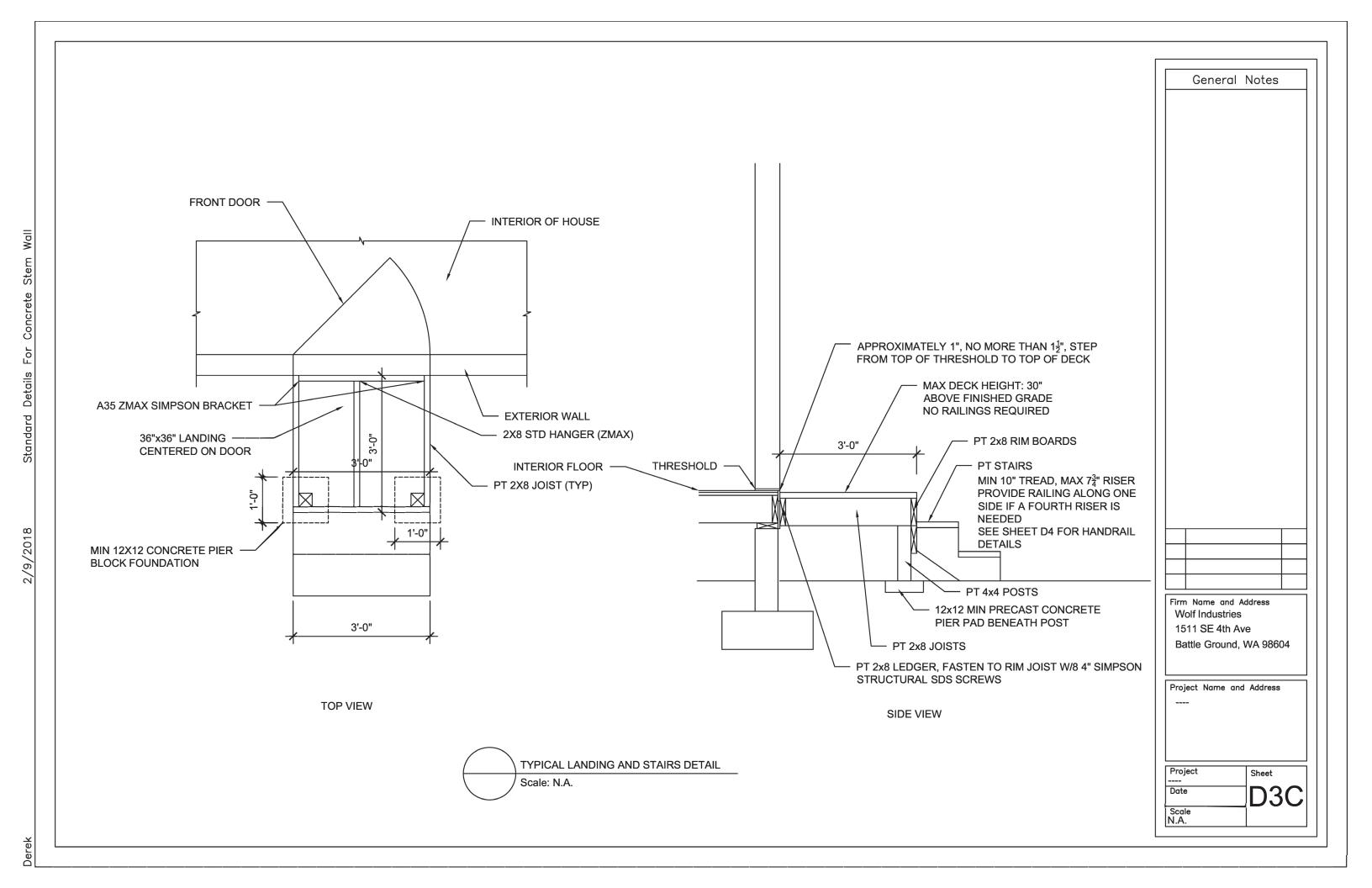

How to Measure Building Height

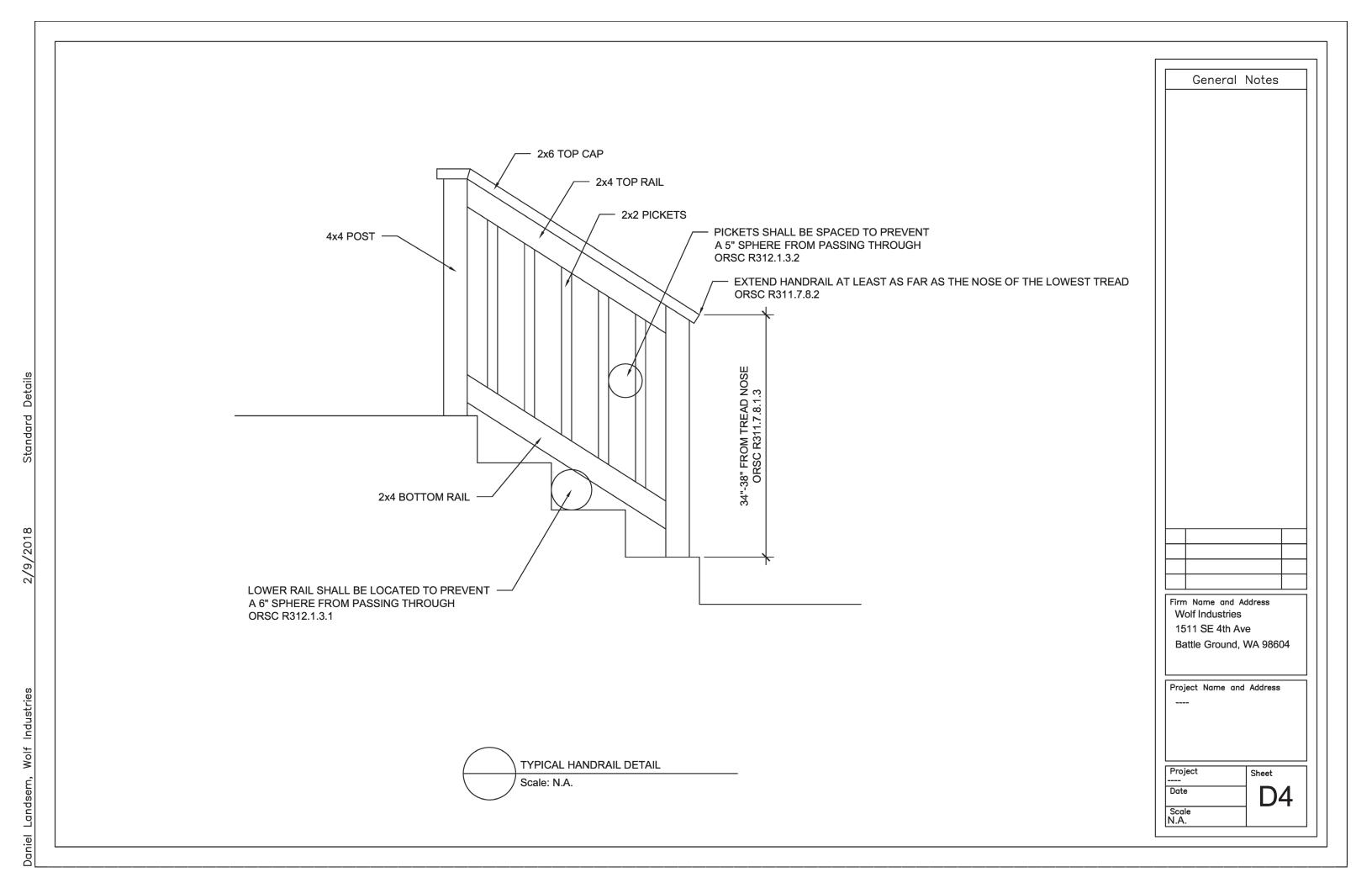
The top of building shall be determined based on the specific roof types listed below.


Flat roof: Measure to the top of the parapet or, if there is no parapet, to the highest point of the roof. If a roof includes multiple flat roofs at different elevations, measure to the top of the

highest parapet or highest point of the highest roof.


- 2. Mansard roof: Measure to the deck line.
- Pitched, hipped, or gambrel roof where roof pitch is 12/12 or less: Measure to the average height of the highest gable.
- 4. Pitched or hipped roof with a pitch steeper than 12/12: Measure to the highest point.
- 5. Gambrel roof where both pitches are steeper than 12/12: Measure to the highest point.
- 6. Other roof shape, such as domed, vaulted, or pyramidal: Measure to the highest point.




7. Stepped or terraced building: Measure to the highest point of any segment of the building.

8/24/2020 11:39:41 AM

PROJECT STRUCTURAL NOTES: (STATE OF OREGON)

1. GOVERNING CODE IS THE 2018 INTERNATIONAL BUILDING CODE AS AMENDED BY THE STATE OF OREGON WITH 2019 OREGON STRUCTURAL SPECIALTY CODE.

2. THE PROJECT WAS DESIGNED FOR THE FOLLOWING LOADS:

a.LIVE LOADS:

i. ROOF

30 PSF SNOW LOAD WITH SNOW DRIFT

ii. FLOOR 40 PSF

b. GROUND SNOW LOAD: 30 PSF

c. WIND LOAD:

145 MPH EXPOSURE B (LRFD) d. SEISMIC LOAD: SEISMIC DESIGN CATEGORY: D

SEISMIC SITE CLASS: D Ss = 0.901g

 $S_1 = 0.412g$

3. THE GENERAL CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING WORK

4. SHOP DRAWINGS SHALL BE REQUIRED FOR REINFORCING STEEL, AND PREFABRICATED BEAMS OR AS REQUIRED BY REVIEWING JURISDICTION. SUBMIT 3 SETS OF DRAWINGS FOR REVIEW.

5. SHOP DRAWINGS, STAMPED BY A REGISTERED ENGINEER IN THE STATE OF OREGON ARE REQUIRED ON THE PREMANUFACTURED GANG-NAILED TRUSSES. SUBMIT 3 SETS OF DRAWINGS AND CALCULATIONS FOR REVIEW. 6. ALL FEATURES OF CONSTRUCTION NOT FULLY SHOWN SHALL BE OF THE SAME TYPE AND CHARACTER AS

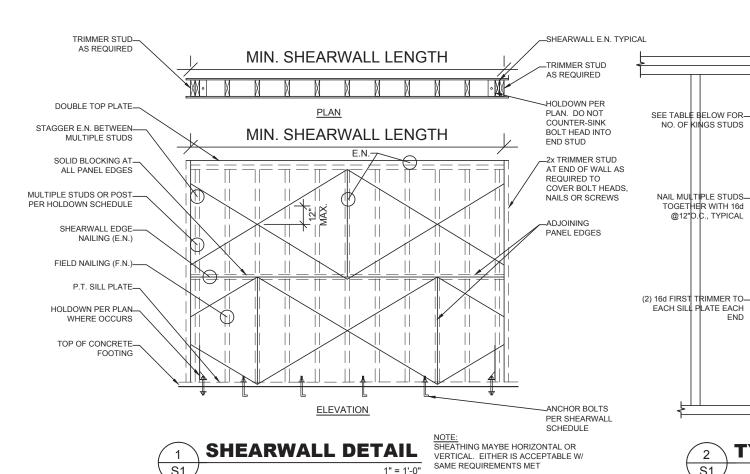
SHOWN FOR SIMILAR CONDITIONS, SUBJECT TO REVIEW OF AOR AND EOR.

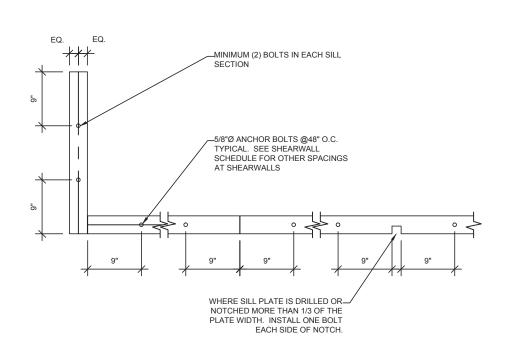
1. SPECIAL INSPECTION REQUIRED SHALL BE PROVIDED PER IBC CHAPTER 17 AND AS REQUIRED BY LOCAL JURISDICTION.

FOUNDATIONS

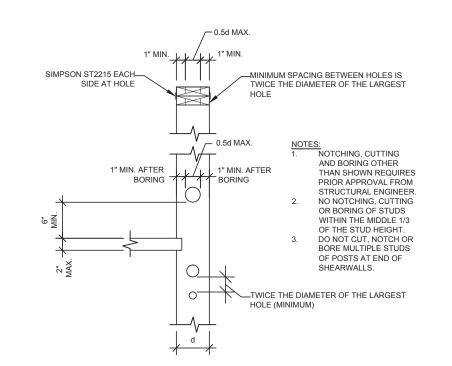
- 1. FOUNDATION SIZES ARE BASED ON AN ASSUMED TOTAL LOAD BEARING PRESSURE OF 1500 PSF PER MIN. IBC REQUIREMENTS. VERIFY WITH GEOTECHNICAL REPORT IF GEOTECHNICAL INVESTIGATION WAS PERFORMED.
- 2. ALL FOOTINGS SHALL BE PLACED ON FIRM, UNDISTURBED NATIVE SOIL, OR ON ENGINEERED FILL COMPACTED TO MINIMUM OF 95% OF THE ASTM d 1557 DENSITY U.N.O. BY THE GEOTECHNICAL REPORT.
- 3. BOTTOM OF ALL FOOTINGS TO BE EMBEDDED BELOW FROST DEPTH OR PER GEOTECHNICAL REPORT, WHICHEVER IS GREATER.

- 1. ALL REINFORCING STEEL SHALL CONFORM TO ASTM A 615 GRADE 60.
- 2. WELDED WIRE FABRIC TO BE PER ASTM A185.
- 3. PLACE 2-0 X 2-0 BARS AT CORNERS AND INTERSECTIONS.
- 4. ALL REINFORCING STEEL SHALL BE DETAILED, FABRICATED, AND PLACED IN ACCORDANCE WITH ACI
- DETAILING MANUAL 315.
- 5. LAP ALL REINFORCING BARS MINIMUM 30".
- 6. SECURELY TIE ALL REINFORCING PRIOR TO PLACING CONCRETE.
- 7. PROVIDE 3" CLEARANCE FOR ALL REINFORCING IN CONCRETE CAST AGAINST EARTH, 2" FOR CONCRETE
- EXPOSED TO AIR, AND 1 1/2" FOR ALL INTERIOR EXPOSURE.

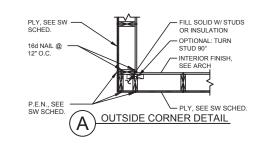

1. ALL CONCRETE SHALL DEVELOP A MINIMUM 28-DAY LAB CURED COMPRESSIVE STRENGTH OF 2500 PSI. 2. ALL EXPOSED CONCRETE TO HAVE 5% PLUS OR MINUS 1% AIR, BY VOLUME, CONFORMING TO ASTM C 260.

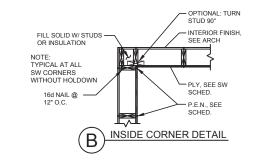

FRAMING LUMBER

- 1. ALL FRAMING LUMBER SHALL BE DOUGLAS FIR-LARCH AND SHALL BE GRADED UNDER THE MOST RECENTLY
- ADOPTED RULES OF THE WEST COAST LUMBER INSPECTION BUREAU (WCLIB). 2. ALL BEAMS AND JOISTS SHALL BE NUMBER 2 OR NUMBER 1 AS INDICATED ON THE PLANS.
- 3. ALL STUDS AND BLOCKING SHALL BE NUMBER 2.
- 4. ALL LUMBER IN CONTACT WITH CONCRETE OR EXPOSED SHALL BE PRESSURE TREATED IN ACCORDANCE
- WITH AWPA STANDARD C-2 AND SHALL BEAR THE AWPA QUALITY MARK. 1. DOUBLE ALL JOISTS UNDER WALL PARTITIONS, AND PROVIDE BLOCKING BETWEEN JOISTS WHERE BEARING
- WALLS ARE PERPENDICULAR TO JOISTS.
- 6. ALL GLULAMS BEAMS TO BE 24F-V4 TYPICAL, 24F-V8 FOR CANTILEVERED OR CONTINUOUS SPAN. 7. ALL LVL LUMBER TO BE MICROLAM LVL OR APPROVED EQUAL.
- 8. ALL PSL LUMBER TO BE PARALLAM PSL OR APPROVED EQUAL


- 1. ALL PLYWOOD SHALL BE C-D GRADE WITH EXTERIOR GLUE MANUFACTURED IN ACCORDANCE WITH THE UNITED STATES PRODUCT STANDARD PS 1-83/ANSI A199.1 "FOR CONSTRUCTION AND INDUSTRIAL PLYWOOD" AND SHALL CONFORM TO UBC STANDARD 23-2 AND SHALL BEAR THE APA TRADEMARK OF THE APA.
- 2. PLYWOOD SHALL BE LAID WITH END JOINTS STAGGERED.
- 3. BLOCK ALL SHEAR WALL SHEATHING WITH 2X BLOCKING AT ALL EDGES.
- 4. ROOF SHEATHING TO BE UNBLOCKED ½" C-D 24/0 PLY WITH 8d AT 6" O.C. PANEL EDGE NAILING AND 12" O.C. FIELD NAILING TYPICAL 5. FLOOR SHEATHING TO BE UNBLOCKED 3/4" T&G C-D 32/16 PLY WITH 10d AT 6" O.C. PANEL EDGE NAILING AND
- 12" O.C. FIELD NAILING TYPICAL, U.N.O.
- 2.EXTERIOR WALLS TO BE 3/8" EXPOSURE I, C-D PLY OR OSB SHEATHING WITH 10d AT 6" O.C. PANEL EDGE NAILING AND 12" O.C. FIELD NAILING UNO. SEE SHEARWALL CALLOUTS AND SCHEDULE.
- 7. OSB MAY BE SUBSTITUTED FOR PLYWOOD WITH SAME SPAN RATING.

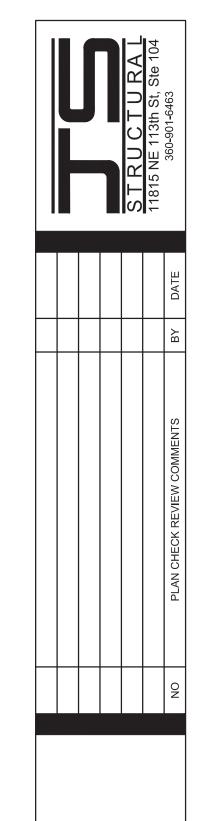
1. ALL TIMBER MATERIAL SHALL BE FASTENED PER IBC TABLE 2304.9.1, "FASTENING SCHEDULE" U.N.O.


TYPICAL WALL OPEN'G ELEVATION


PROVIDE TRIMMERS UNDER
HEADER TO MATCH NO. OF KING
STUDS, USE (2) TRIMMERS MIN.

@12"O.C., TYPICAL

END



_ALIGN CRIPPLES WITH

FRAMING ABOVE

MINIMUM HEADER

@2x6 STUD WALI

UNLESS NOTED

OTHERWISE ON PLANS

KING STUD TO

_PROVIDE SILL

MATCH # O

KING STUDS

-2-16d, PLATE

TO EACH END OF EACH KING STUD PER

STRUCTURAL

LENGTH

L ≦ 6'-0"

6'-0" <u>≤</u> L <u>≤</u> 10'-0"

10'-0" ≦ L ≦ 12'-0" 3

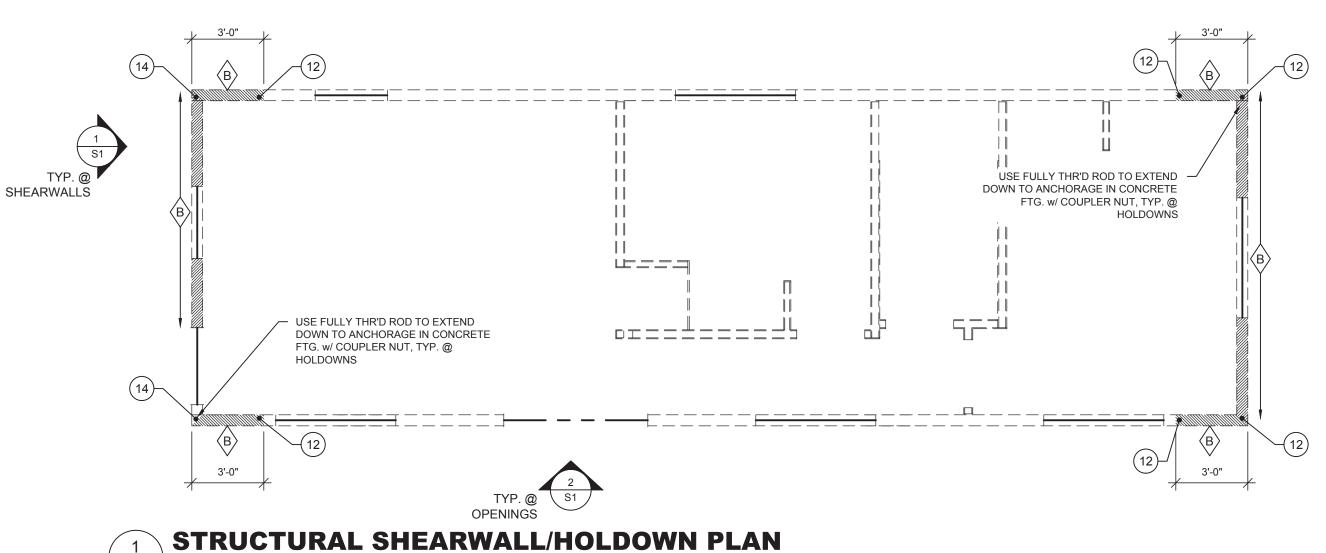
KING STUDS

HEADER EACH

EXTERIOR WALL

AND (2) 2x6 @2x4

INDUSTRIE S Ш NOW MO


ST/

Ш

07-22-2020 DATE: DRAWN BY: JES JES CHECK BY: JOB: 18-081

> STRUCTURAL NOTES **SCHEDULES & DETAILS**

SHEET:

1/4" = 1'-0"

SHEARWALLS

S2

CRIPPLE WALLS, AS REQUIRED, TO BE NAILED SAME AS FULL HEIGHT

INDICATES HOLDDOWN TYPE & LOCATION. HOLDDOWNS TO BE LOCATED AT END OF SHEARWALLS, TYPICAL U.N.O. ON PLAN.

DIMENSIONS SHOWN ARE FOR REFERENCE ONLY, CONFIRM W/DESIGNER PLANS & DETAILS FOR ALL DIMENSIONING.

BOTTOM OF FOOTINGS TO BE PLACED BELOW FROST DEPTH.

ALL FOOTINGS ARE TO BE CENTERED UNDER COLUMNS U.N.O. ALL WOOD POSTS TO HAVE SIMPSON BP, U.N.O.

ALL FOOTINGS TO BEAR OVER GRADE OVER FIRM, UNDISTURBED,

NON-ORGANIC, NON-EXPANSIVE NATIVE MATERIAL, OR STRUCTURAL FILL AS REQUIRED PER GEOTECHNICAL REPORT.

REFER TO 3/S1 AND 4/S1 FOR ALL PLATE AND STUD TYPICAL NOTCHING, BORING AND CUTTING REQUIREMENTS.

REFER TO S1 FOR STRUCTURAL NOTES AND S3 FOR SHEARWALL AND

HOLDOWN SCHEDULE.

ALL BEAMS TO HAVE SOLID STUD BEARING MINIMUM FROM BEARING

FOUNDATION AND FRAMING PLAN NOTES:

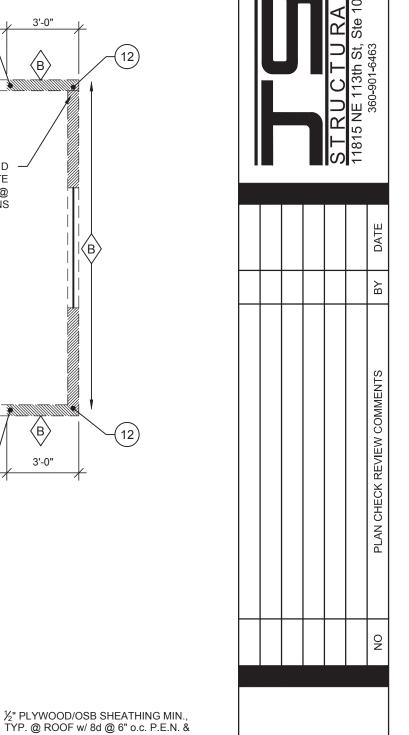
ROOF FRAMING NOTES:

COORDINATE ALL DIMENSIONS & FEATURES NOT SHOWN WITH ARCHITECTURAL PLANS.

INDICATES SHEARWALL TYPE, SEE SHEARWALL SCHEDULE.

INDICATES PERFORATED SHEARWALL. ARROWS INDICATE LENGTH OF PERFORATED SHEARWALL. PROVIDE NAILING PER SHEARWALL SCHEDULE @ PANEL EDGES & AROUND ALL OPENINGS FOR ENTIRE WALL

INDICATES SHEARWALL LOCATION BELOW FRAMING. SEE SCHEDULE.


TYPICAL EXTERIOR HEADER IS 4X6 D.F. USE (2) 2x6 TRIMMERS UNO ON

5.

SEE SHEET S1 FOR STRUCTURAL NOTES AND S3 FOR SHEARWALL AND HOLDOWN SCHEDULE.

> **ROOF FRAMING PLAN** 1/4" = 1'-0"

SIM., TYP. w/ OPP. SLOPE

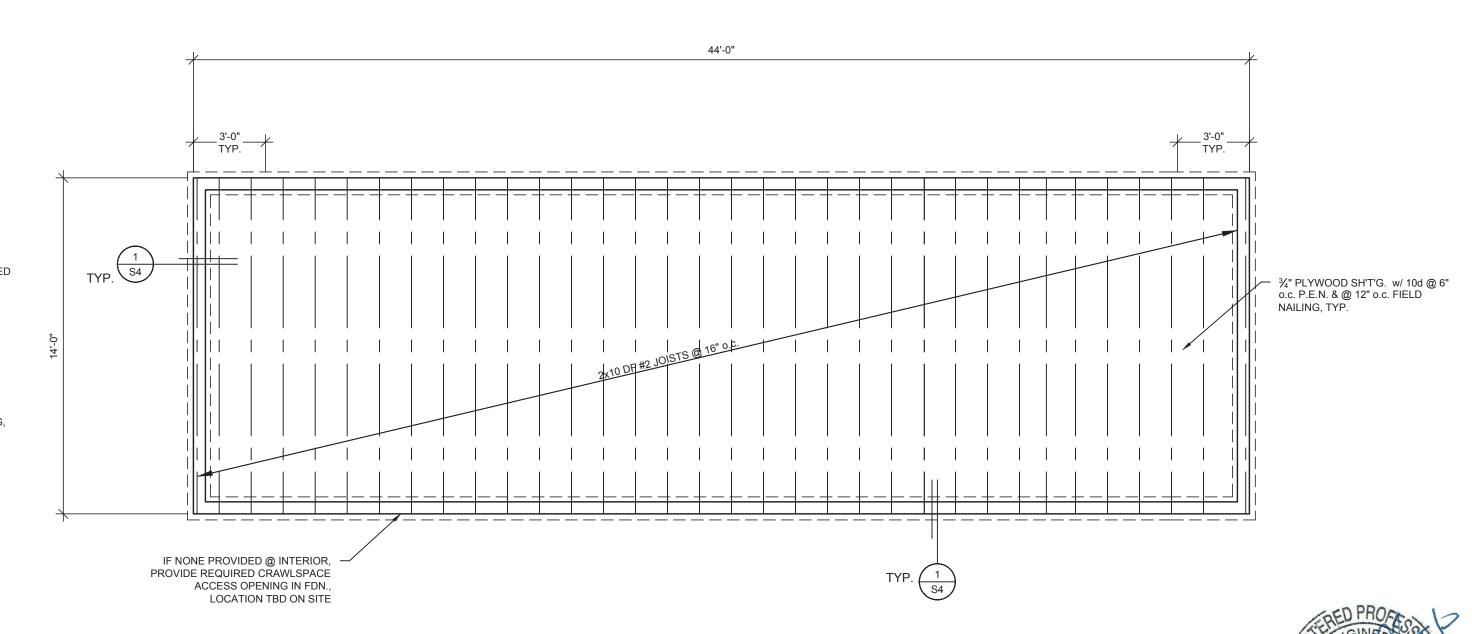
F INDUSTRIES SE MO

DATE: 07-22-2020 DRAWN BY: JES JES CHECK BY: 18-081

STRUCTURAL LAYOUT

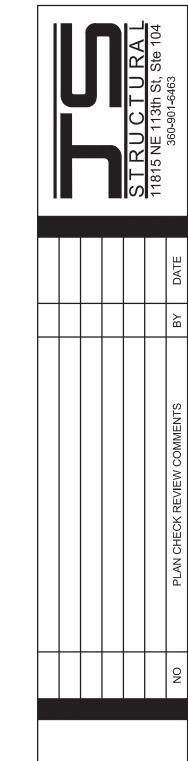
SHEET:

12" o.c. FIELD NAILING


5 S4

	SHEARWALL SCHEDULE (Not All Symbols Used on Plans)								
\Diamond	SHEATHING	SHEAR (PLF)	NAIL/STAPLE SIZE	EDGE NAILS/ STAPLES (O.C.)	FIELDNAILS/ STAPLES (O.C)	BOT. PLATE NAILING (O.C)	TOP PLATE A35 (O.C)	5/8"x10" A.B. (O.C.)	REMARKS
G1	5/8" GYPSUM, ONE SIDE	88	7d COOLER	4"	10"	16d @ 12"	5'-0"	6'-0"	
А	7/16" APA RATED, ONE SIDE	260	8d/16 GA	6"/4"	12"	16d @ 6"	1'-9"	5'-0"	
В	7/16" APA RATED, ONE SIDE	349	8d/16 GA	4"/3"	12"	16d @ 4"	1'-0"	3'-6"	
С	7/16" APA RATED, ONE SIDE	490	8d/16 GA	3"/2"	12"	16d @ 3"	0'-11"	2'-9"	
D	7/16" APA RATED, ONE SIDE	640	8d	2"	12"	16d @ 2"	0'-8"	2'-0"	USE 3x STUDS

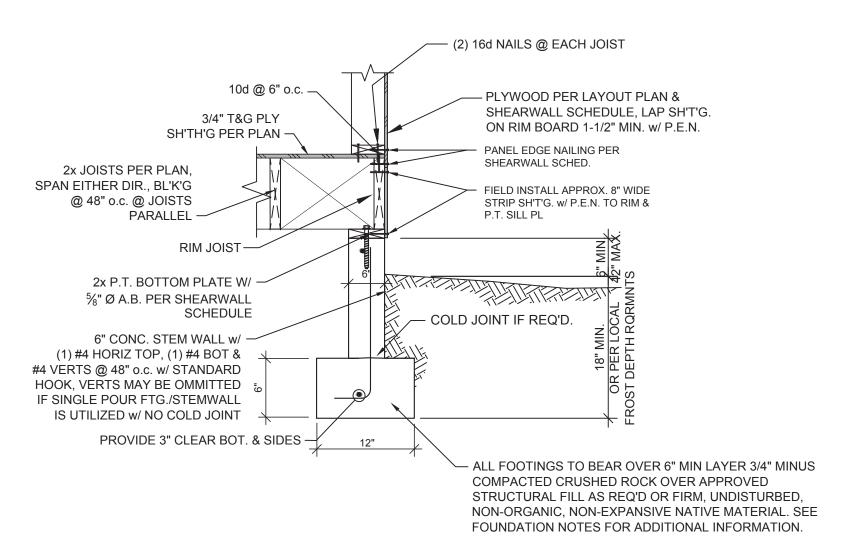
- ALL PLYWOOD TO BE APA RATED STRUCTURAL 1 EXTERIOR SHEATHING
- ALL NAILS TO BE COMMON OR GALVANIZED BOX TYPE.
- FLOOR AND ROOF DIAPHRAGMS TO BE NAILED WITH 10d NAILS @ 6" O.C. EDGE NAILING AND 12" ON CENTER FIELD NAILING. USE PLYWOOD THICKNESS AS INDICATED ON PLAN.
- ATTACH RIM JOIST AND / OR BLOCKING TO SHEARWALL AS INDICATED IN TABLE ABOVE.
- ALL WALL SHEATHING TO EXTEND FULL HEIGHT OF WALL, TOP PLATE TO BOTTOM PLATE. ALL SHEARWALLS AND HOLDOWNS MUST HAVE CONTINUOUS LOAD PATH TO FOUNDATION.
- USE 3" x 3" x 1/4" PLATE WASHER TYPICAL AT ALL ANCHOR BOLTS.
- WHERE TOP PLATE FASTENING IS LESS THAN 12" O.C., USE MINIMUM BLOCKING OF 2-1/2" MANUFACTURED LUMBER (MICROLLAM LVL, OR PARALLAM PSL).
 GYPSUM SHEATHING TO BE ATTACHED WITH SCREWS (TYPE AS NOTED IN SCHEDULE). SCREWS FOR ATTACHMENT OF GYPSUM SHEATHING MUST BE TYPE W OR S.
- ALL SHEAR WALLS TO BE FULLY BLOCKED U.N.O. BLOCKING TO MATCH REQUIREMENTS FOR PANEL EDGE STUDS.
- FOR SHEARWALLS W/ (2) ROWS OF BOTTOM PLATE NAILING, USE MIN. 1-3/4" RIM BOARD, SPACE ROWS A MIN. OF 1/2" APART, AND STAGGER NAILS.
- 12. FOR SHEARWALLS W/ STUDS SPACED AT 16" O.C. MAX. INSTALL SHEATHING WITH LONG DIMENSION ACROSS STUDS.


HOLDOWN SCHEDULE (Not All Symbols Used on Plans)									
Y	SIMPSON MODEL	ALLOWABLE LOAD (LBS.)	MINIMUM POST THICKNESS	FASTENERS	ANCHORS	REMARKS			
4A	MSTCM40	4220	(2) 2x STUDS	26-16d SINKERS 14- 1/4x1 3/4 TITEN	-	IN WOOD IN CONCRETE			
4B	MSTC40	2695	(2) 2x STUDS	18-16d SINKERS	-				
12	HDU2-SDS2.5	3075	(2) 2x STUDS	10 SDS1/4x3-1/2 SCREWS	SSTB16				
14	HDU5-SDS2.5	5465	(2) 2x STUDS	16 SDS1/4x3-1/2 SCREWS	SSTB20				

- NAILS ARE TO BE COMMON WIRE NAILS, U.N.O.
- HARDWARE IS TO BE SIMPSON, U.N.O.
- HOLDOWN HARDWARE CAN BE EXTENDED WITH A307 THRD ROD AND COUPLER.
- ALIGN ALL HOLDOWNS FOR THE FULL HEIGHT OF STRUCTURE.
- ALL HARDWARE TO BE INSTALLED PER MANUFACTURE'S SPECIFICATIONS.
- HOLDOWN ANCHOR BOLTS ARE IN ADDITION TO TYPICAL SILL PLATE ANCHOR BOLTS.
- CAPACITIES PER REVISED SIMPSON CATALOG C-2015.
- EXTEND THREADED ROD TO WITHIN 3" CLEAR OF BOTTOM OF FOOTING.
- STRAP HOLDOWNS (MSTC ETC.) LOADS ARE BASED ON FLOOR TO FLOOR CLEAR SPAN TABLES W/ A CLEAR SPAN OF 18" (11 7/8-12 DEPTH).

FOUNDATION AND FRAMING PLAN NOTES:

- DIMENSIONS SHOWN ARE FOR REFERENCE ONLY, CONFIRM W/ DESIGNER PLANS & DETAILS FOR ALL DIMENSIONING.
- CRIPPLE WALLS, AS REQUIRED, TO BE NAILED SAME AS FULL HEIGHT
- INDICATES HOLDDOWN TYPE & LOCATION. HOLDDOWNS TO BE LOCATED AT END OF SHEARWALLS, TYPICAL U.N.O. ON PLAN.
- BOTTOM OF FOOTINGS TO BE PLACED BELOW FROST DEPTH.
- ALL FOOTINGS ARE TO BE CENTERED UNDER COLUMNS U.N.O. ALL WOOD POSTS TO HAVE SIMPSON BP, U.N.O.
- - ALL FOOTINGS TO BEAR OVER GRADE OVER FIRM, UNDISTURBED, NON-ORGANIC, NON-EXPANSIVE NATIVE MATERIAL, OR STRUCTURAL FILL AS REQUIRED PER GEOTECHNICAL REPORT.
- REFER TO 3/S1 AND 4/S1 FOR ALL PLATE AND STUD TYPICAL NOTCHING. BORING AND CUTTING REQUIREMENTS.
- REFER TO S1 FOR STRUCTURAL NOTES AND S3 FOR SHEARWALL AND
- HOLDOWN SCHEDULE.
- ALL BEAMS TO HAVE SOLID STUD BEARING MINIMUM FROM BEARING



INDUSTRIE WO

DATE: 07-22-2020 DRAWN BY: JES CHECK BY: JES JOB: 18-081

STRUCTURAL LAYOUT, FRAMING & FOUNDATION

SHEET:

SECTION @ FOUNDATION

3/4" = 1'-0"

2 SECTION @ POST/BM./FTG.

S4

3/4" = 1'-0"

3/4" = 1'-0"

SIMPSON A35 CLIP @ 48" o.c. OR PER SHEARWALL SCHEDULE
SH'T'G PER PLAN

8d @ 6" o.c.

(2) 16d @ EA. OUTRIGGER
P.E.N.

2x RAFTER, SEE PLAN
2x OUTRIGGERS @
24" o.c.

4 **NOT USED**3/4" = 1'-0"

SECTION @ OUTRIGGER

S4

ROOF SHEATHING PER PLAN BOUNDARY EDGE NAILING PER PLAN 2X BLOCKING, MAY BE INSTALLED PERPENDICULAR TO ROOF SH'T'G. RAFTER PER PLAN SIMPSON H2.5 CLIP, TYPICAL. MAY BE INSTALLED INT. OR EXT. SIMPSON A35 @ 24" O.C. U.N.O. PER SHEAR WALL SCHEDULE PANEL EDGE NAILING PER PLAN G.C. TO NOTCH RAFTERS (IF NEEDED, BUT NOT REQ'D.) @ 2X6 @ 24" O.C. STUD WALL W/ EXTERIOR FACE OF PLATE TO DOUBLE TOP PLATES AND PROVIDE PROPER FASCIA DEPTH SINGLE BOTTOM PLATE WALL SHEATHING PER PLAN

SECTION @ FRAMING

WOLF INDUSTRIES
INY HOUSE_MODEL E

DATE: 07-22-2020
DRAWN BY: JES
CHECK BY: JES
JOB: 18-081

ST/

STRUCTURAL DETAILS

SHEET:

S4

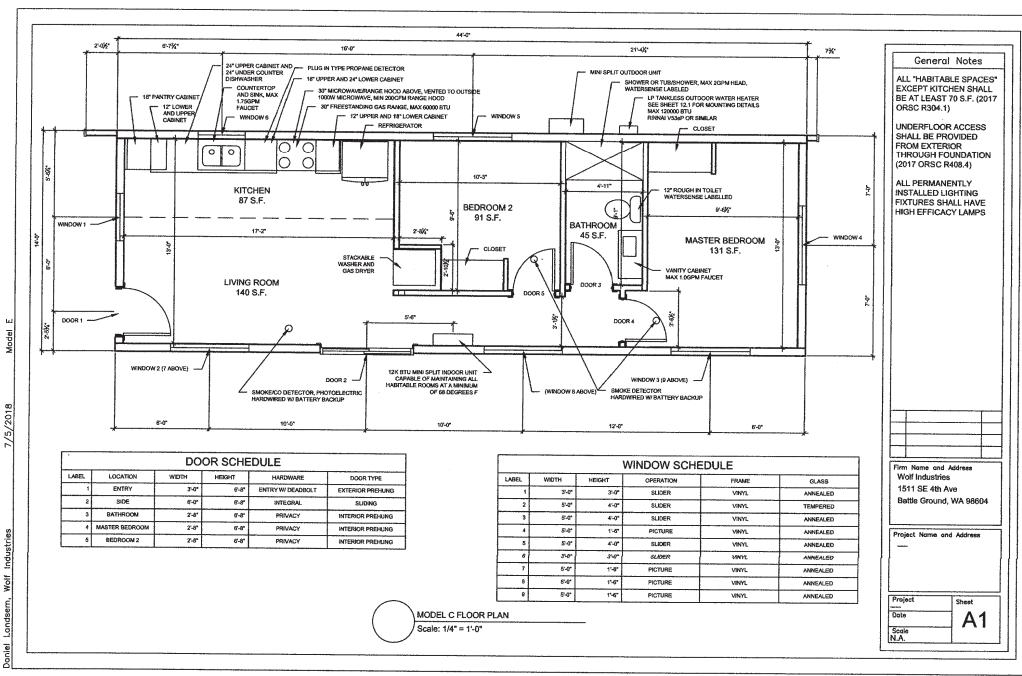
PROJECT DESCRIPTION:

Provide analysis and design for the new wood framed single story tiny home, 14' wide x 44' long. Standard wood framed design with 2x rafter, shed roof construction and solid wood joist floor. Lateral forces induced by wind and/or seismic loads will be resisted via horizontally sheathed roof diaphragm and vertically sheathed shearwalls that carry loads down to concrete foundations as needed.

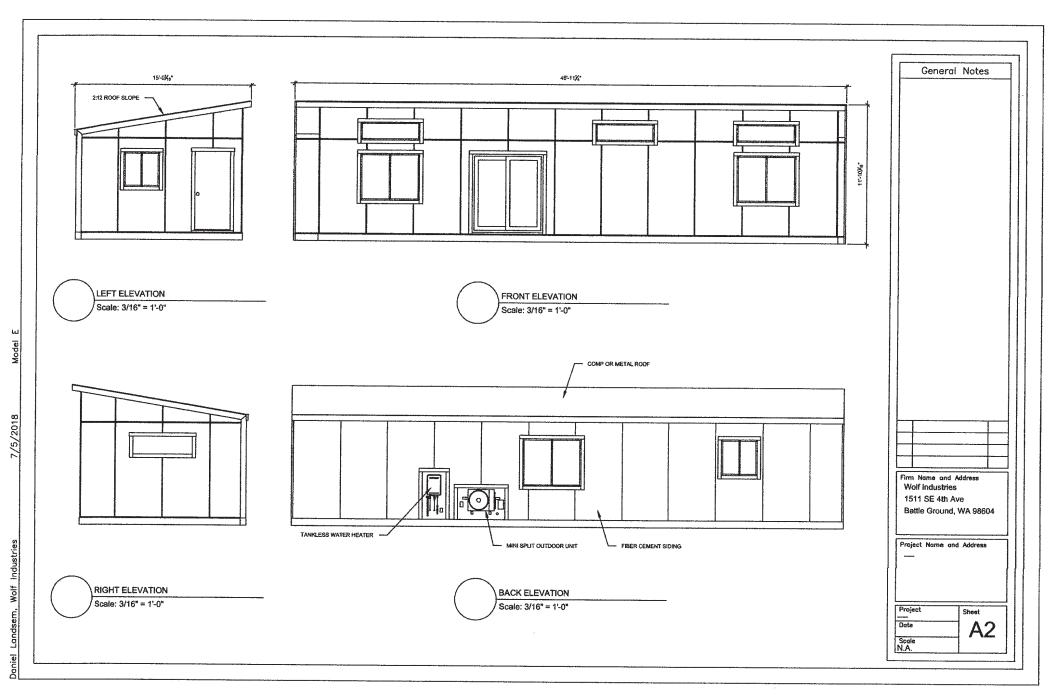
CONTENTS:

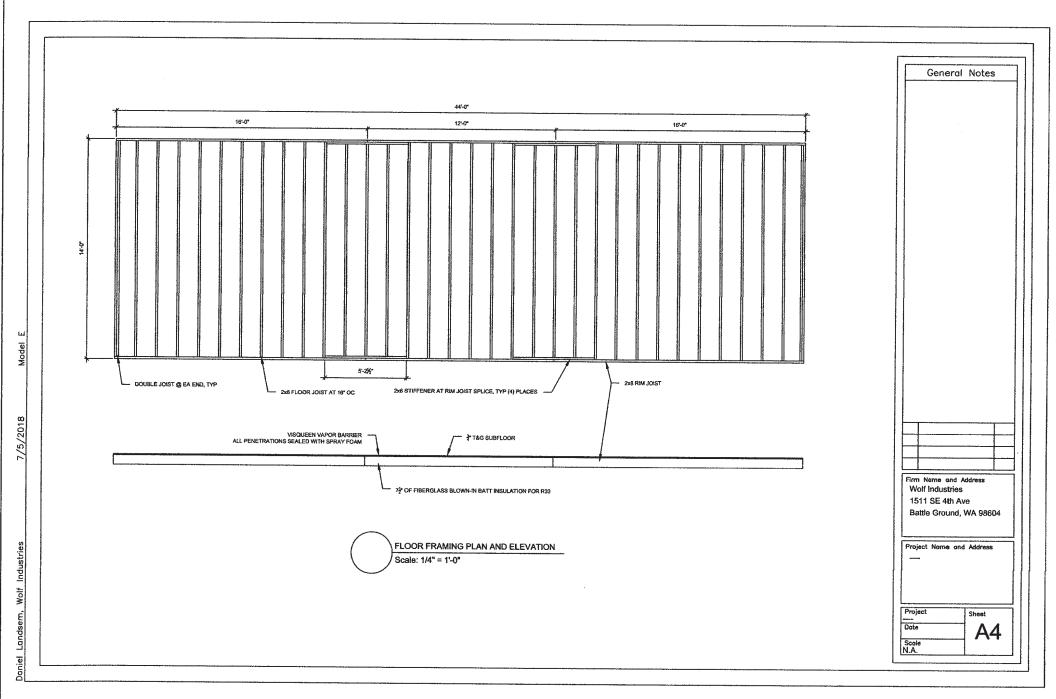
Sample Plans/Elevations/Sections

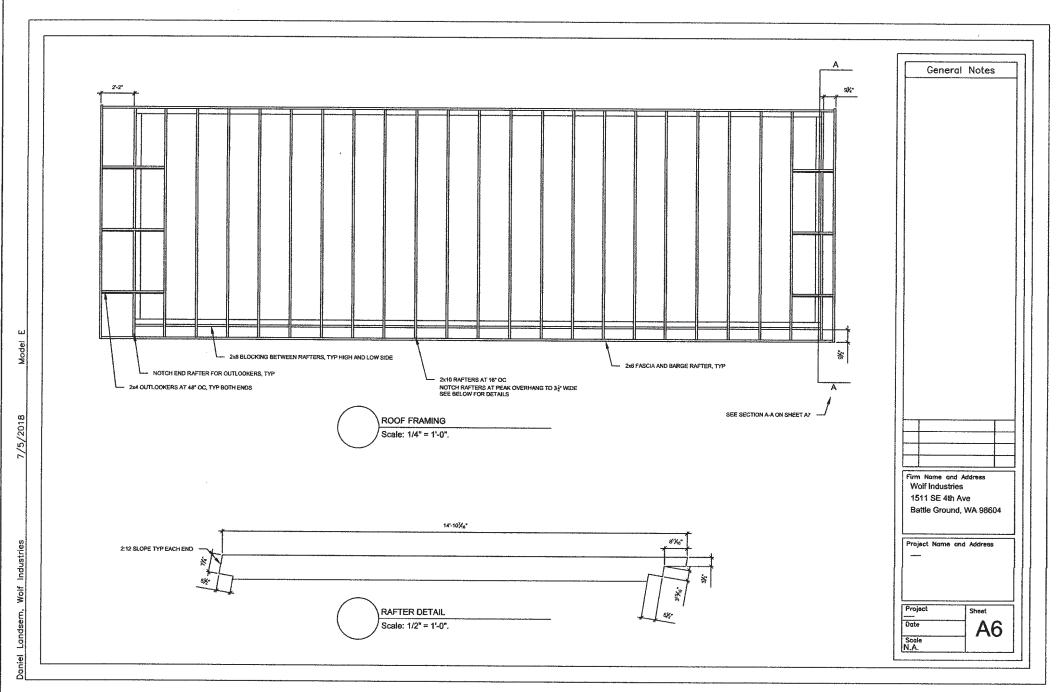
P-1/P-5

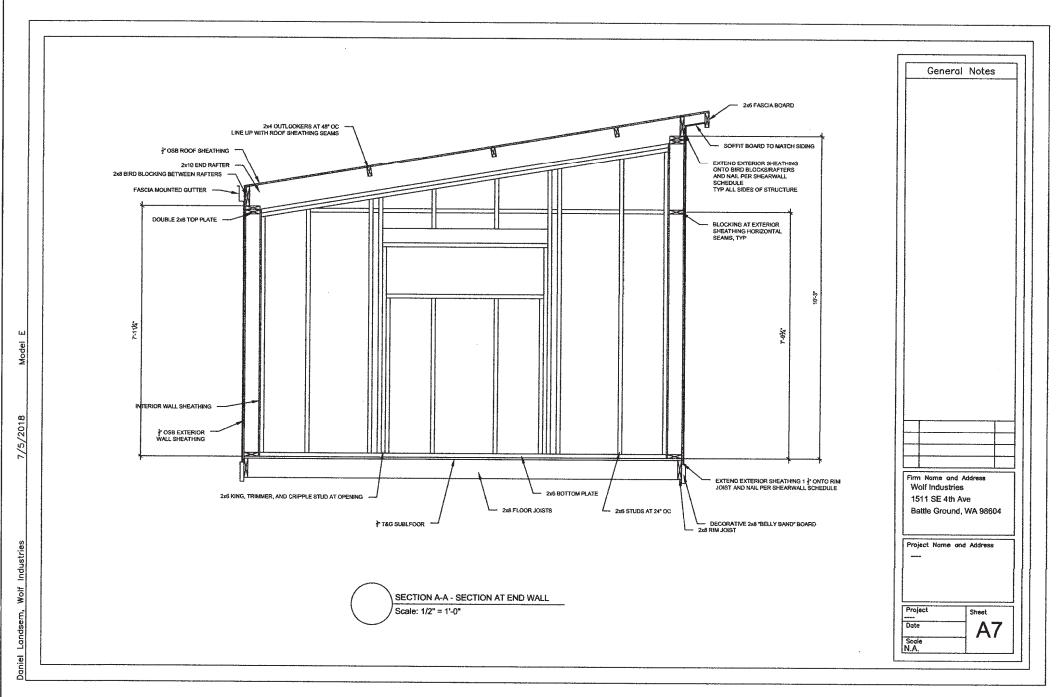

Lateral Force Analysis

LFA-1/LFA-9


Framing Design


F-1/F-8


OREGON 13, 200 E. STANE EXPIRES: 6/30/2020



P.1/5

JS STRUCTURAL, PLLC

11815 NE 113th Street, Ste 104, Vancouver, WA 98662

c. 360.901.6463

o. 360.883.5331

WOLF INDUSTRIES TINY HOUSE_MODEL

JS Project No.: 18-081

_LFA-1/*9*

BUILDING FORCES:

 International Building Code 2015/Oregon Structural Specialty Code 2017/ASCE 7-10

Simplified Wind:

145 mph-3 second Gust (LRFD)

Exposure Type 'B'

Equivalent Lateral Force Procedure:

- Typical Plate Height = 8'-0"
- Roof Slope = 3:12 === 14°
- Mean Roof Height, hn = 8' + 4/2' = 10'
- a = 0.4 (hn) OR a = 0.1 (Least Dimension) BUT NOT LESS THAN 3'
 a = 0.4(10') OR a = 0.1(14')
 a = 4.0' OR a = 1.4'
 3' CONTROLS
 a = 3'
 2a = 6'

A = End Zone of Wall = 25.7 psf B = End Zone of Roof = 10.0 psf C = Interior Zone of Wall = 18.0 psf D = Interior Zone of Roof = 6.0psf γ = 1.0

A' = End Zone of Wall = psf B' = End Zone of Roof = psf C' = Interior Zone of Wall = psf D' = Interior Zone of Roof = psf

SGS Design Maps Summary Report

User-Specified Input

Report Title Tiny Home_Oregon

Wed August 1, 2018 16:10:07 UTC

Building Code Reference Document 2012/2015 International Building Code

(which utilizes USGS hazard data available in 2008)

Site Coordinates 45.51176°N, 122.67557°W

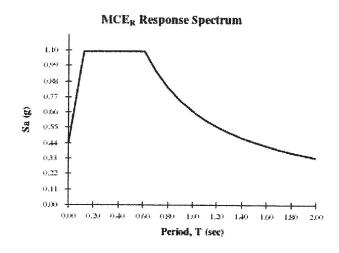
Site Soil Classification Site Class D - "Stiff Soil"

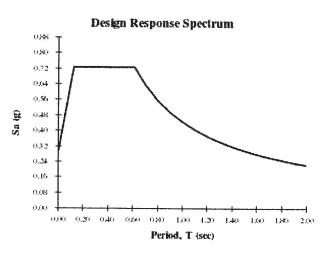
Risk Category I/II/III

USGS-Provided Output

$$S_s = 0.987 g$$

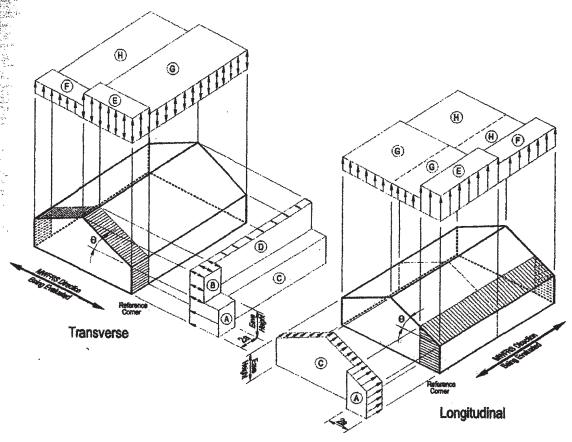
$$S_{MS} = 1.091 g$$


$$S_{ps} = 0.727 g$$


$$S_1 = 0.424 g$$

$$S_{M1} = 0.668 g$$

$$S_{D1} = 0.446 g$$


For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

Main Wind Force R	esisting System – Method 1	h ≤ 60 ft.
Figure 6-2	Design Wind Pressures	W.B. C.T. C
Enclosed Buildings		Walls & Roofs

Notes:

- Pressures shown are applied to the horizontal and vertical projections, for exposure B, at h=30 ft (9.1m), I=1.0, and K_{xt} = 1.0. Adjust to
 other conditions using Equation 6-1.
- 2. The load patterns shown shall be applied to each corner of the building in turn as the reference corner. (See Figure 6-10)
- 3. For the design of the longitudinal MWFRS use $\theta = 0^{\circ}$, and locate the zone E/F, G/H boundary at the mid-length of the building.
- Load cases 1 and 2 must be checked for 25° < θ ≤ 45°. Load case 2 at 25° is provided only for interpolation between 25° to 30°.
- 5. Plus and minus signs signify pressures acting toward and away from the projected surfaces, respectively.
- For roof slopes other than those shown, linear interpolation is permitted.
- 7. The total horizontal load shall not be less than that determined by assuming $p_5 = 0$ in zones B & D.
- 8. The zone pressures represent the following:

Horizontal pressure zones - Sum of the windward and leeward net (sum of internal and external) pressures on vertical projection of:

- A End zone of wall
- C Interior zone of wall
- B End zone of roof
- D Interior zone of roof

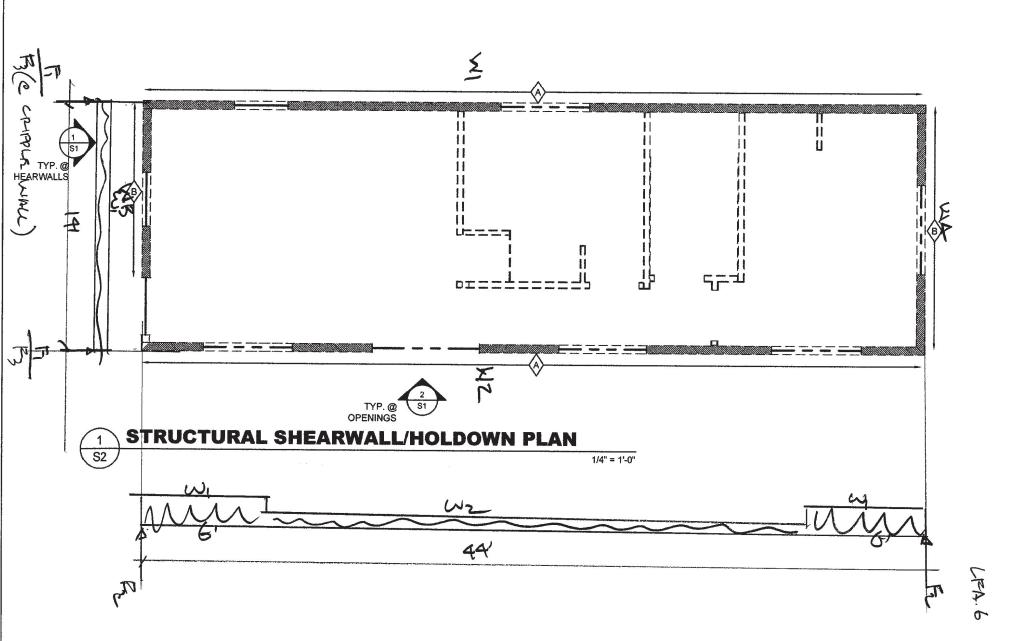
Vertical pressure zones - Net (sum of internal and external) pressures on horizontal projection of:

- E End zone of windward roof
- G Interior zone of windward roof
- F End zone of leeward roof
- H Interior zone of leeward roof
- Where zone E or G falls on a roof overhang on the windward side of the building, use E_{OH} and G_{OH} for the pressure on the horizontal projection of the overhang. Overhangs on the leeward and side edges shall have the basic zone pressure applied.
 Notation:
 - a: 10 percent of least horizontal dimension or 0.4h, whichever is smaller, but not less than either 4% of least horizontal dimension or 3 ft (0.9 m).
 - h: Mean roof height, in feet (meters), except that eave height shall be used for roof angles <10°.
 - θ : Angle of plane of roof from horizontal, in degrees.

Main Wind Force Resis	ting System – Method 1	h ≤ 60 ft.			
Figure 6-2 (cont'd)	Design Wind Pressures	Walls & Roofs			
Enclosed Buildings		Walls & Roots			

LFA-4

Simplified Design Wind Pressure, p_{s30} (psf) (Exposure B at h = 30 ft., $K_{zt} = 1.0$, with l = 1.0)


		_®					Zo	nes				
Basic Wind Speed	Roof Angle	Case	Н	orizontal l	Pressures			Vertical P	ressures		Overt	angs
(mph)	(degrees)	Load	Α	В	С	D	E	F	G	Н	Еон	GOH
	0 to 5°	1	11.5	-5.9	7.6	-3.5	-13.8	-7.8	-9.6	-6.1	-19.3	-15.1
	10°	1	12.9	-5.4	8.6	-3.1	-13.8	-8.4	-9.6	-6.5	-19.3	-15.1
	15°	1	14.4	-4.8	9.6	-2.7	-13.8	-9.0	-9.6	-6.9	-19.3	-15.1
85	20°	1	15.9	-4.2	10.6	-2.3	-13.8	-9.6	-9.6	-7.3	-19.3	-15.1
	25°	1	14.4	2.3	10.4	2.4	-6.4	-8.7	-4.6	-7.0	-11.9	-10.1
		2					-2.4	-4.7	-0.7	-3.0		
1	30 to 45	1	12.9	8.8	10.2	7.0	1.0	-7.8	0.3	-6.7	-4.5	-5.2
		2	12.9	8.8	10.2	7.0	5.0	-3.9	4.3	-2.8	-4.5	-5.2
1	0 to 5°	1	12.8	-6.7	8.5	-4.0	-15.4	-8.8	-10.7	-6.8	-21.6	-16.9
	10°	1	14.5	-6.0	9.6	-3.5	-15.4	-9.4	-10.7	-7.2	-21.6	-16.9
	15°	1	16.1	-5.4	10.7	-3.0	-15.4	-10.1	-10.7	-7.7	-21.6	-16.9
90	20°	1	17.8	-4.7	11.9	-2.6	-15.4	-10.7	-10.7	-8.1	-21.6	-16.9
	25°	1	16.1	2.6	11.7	2.7	-7.2	-9.8	-5.2	-7.8	-13.3	-11.4
	30 to 45	2 1	14.4	9.9	14.5	7.0	-2.7	-5.3	-0.7	-3.4		
	30 (0 45	2	14.4	9.9	11.5 11.5	7.9 7.9	1.1 5.6	-8.8 -4.3	0.4 4.8	-7.5 -3.1	-5.1 -5.1	-5.8
	0 to 5°	1	15.9	-8.2	10.5	-4.9	-19.1	-10.8	-13.3	-8.4	-26.7	-5.8 -20.9
1	10°	1	17.9	-7.4	11.9	-4.3	-19.1	-11.6	-13.3	-8.9	-26.7	-20.9
	15°	1	19.9	-6.6	13.3	-3.8	-19.1	-12.4	-13.3	-9.5	-26.7	-20.9
100	20°	1	22.0	-5.8	14.6	-3.2	-19.1	-13.3	-13.3	-10.1	-26.7	-20.9
100	25°	1	19.9	3.2	14.4	3.3	-8.8	-12.0	-6.4	-9.7	-16.5	-14.0
		2	******				-3.4	-6.6	-0.9	-4.2		******
	30 to 45	1	17.8	12.2	14.2	9.8	1.4	-10.8	0.5	-9.3	-6.3	-7.2
		2	17.8	12.2	14.2	9.8	6.9	-5.3	5.9	-3.8	-6.3	-7.2
	0 to 5°	1	17.5	-9.0	11.6	-5.4	-21.1	-11.9	-14.7	-9.3	-29.4	-23.0
1	10°	1	19.7	-8.2	13.1	-4.7	-21.1	-12.8	-14.7	-9.8	-29.4	-23.0
	15°	1	21.9	-7.3	14.7	-4.2	-21.1	-13.7	-14.7	-10.5	-29.4	-23.0
105	20°	-1	24.3	-8.4	16.1	-3.5	-21.1	-14.7	-14.7	-11.1	-29.4	-23.0
	25°	1	21.9	3.5	15.9	3.5	-9.7	-13.2	-7.1	-10.7	-18.2	-15.4
	30 to 45	2	19.6	13.5	15.7	10.0	-3.7	-7.3	-1.0	-4.6		7.0
	00 10 40	2	19.6	13.5	15.7	10.8 10.8	1.5 7.6	-11.9 -5.8	0.6 6.5	-10.3 -4.2	-6.9 -6.9	-7.9 -7.9
	0 to 5°	1	19.2	-10.0	12.7	-5.9	-23.1	-13.1	-16.0	-10.1	-32.3	-25.3
	10°	1	21.6	-9.0	14.4	-5.2	-23.1	-14.1	-16.0	-10.1	-32.3	-25.3 -25.3
	15°	1	24.1	-8.0	16.0	-4.6	-23.1	-15.1	-16.0	-11.5	-32.3	-25.3
110	20°	1	26.6	-7.0	17.7	-3.9	-23.1	-16.0	-16.0	-12.2	-32.3	-25.3
110	25°	1	24.1	3.9	17.4	4.0	-10.7	-14.6	-7.7	-11.7	-19.9	-17.0
		2					-4.1	-7.9	-1.1	-5.1		
1	30 to 45	1	21.6	14.8	17.2	11.8	1.7	-13.1	0.6	-11.3	-7.6	-8.7
		2	21.6	14.8	17.2	11.8	8.3	-6.5	7.2	-4.6	-7.6	-8.7
	0 to 5°	1	22.8	-11.9	15.1	-7.0	-27.4	-15.6	-19.1	-12.1	-38.4	-30.1
	10°	1	25.8	-10.7	17.1	-6.2	-27.4	-16.8	-19.1	-12.9	-38.4	-30.1
1	15°	1	28.7	-9.5	19.1	-5.4	-27.4	-17.9	-19.1	-13.7	-38.4	-30.1
120	20°	1	31.6	-8.3	21.1	-4.6	-27.4	-19.1	-19.1	-14.5	-38.4	-30.1
	25°	1	28.6	4.6	20.7	4.7	-12.7	-17.3	-9.2	-13.9	-23.7	-20.2
	20 to 45	2	05.7	47.0	00.4		-4.8	-9.4	-1.3	-6.0		
	30 to 45	1 2	25.7 25.7	17.6 17.6	20.4 20.4	14.0 14.0	2.0 9.9	-15.6 -7.7	0.7	-13.4	-9.0	-10.3
L			20.7	17.0	£0,4	14.0	5.5	-7.7	8.6	-5.5	-9.0	-10.3

Unit Conversions—1.0 ft = 0.3048 m; $1.0 \text{ psf} = 0.0479 \text{ kN/m}^2$

Main Wind Force Resis	ting System – Method 1	h ≤ 60 ft.
Figure 6-2 (cont'd)	Design Wind Pressures	W-H- o D c
Enclosed Buildings		Walls & Roofs

$\label{eq:Adjustment} \mbox{ Adjustment Factor} \\ \mbox{ for Building Height and Exposure, } \lambda \\ \mbox{ }$

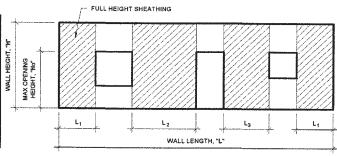
Mean roof		Exposure	
height (ft)	В	С	D
15	1.00	1.21	1.47
20	1.00	1.29	1.55
25	1.00	1.35	1.61
30	1.00	1.40	1.66
35	1.05	1.45	1.70
40	1.09	1.49	1.74
45	1.12	1.53	1.78
50	1.16	1.56	1.81
55	1.19	1.59	1.84
60	1.22	1.62	1.87

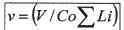
CLIENT		WOLF INDUSTRIES
PROJECT		TINY HOUSE MODEL E (14x44)
BY	JES	DATE JULY 31, 2018
PROJECT NO	18-081	SHEET 47 OF

PRICE ANALYSIS PRICES PRICES PRICES PARTICLES PARTICLE	Office 360.883.5331 • Mobile	
DRESCUPERS	LATERAL PONCE	ANALYSIS
DRESCUPERS		
DRESCUPEFOS: Wy = 4(R) + 8/2 (A) = 4(10.0) + 4(25.7) = 143. PUR WY = 4(R) + 8/2 (A) = 4(6.0) + 1(6.0) = 96 PUR WY = 4(R) + 8/2 (C) = 4(6.0) + 1(6.0) = 96 PUR PROJECTS! PER 143 (14/2) = (60) #		BULLDING FORCES:
DRISCUPERS: Wy = 4(R) + 8/2 (A) = 4(10.0) + 4(25.7) = 143, PUR WZ = 4(R) + 8/2 (C) = 4(6.0) + 1(16.0) = 96 PUR LE = 4(R) + 8/2 (C) = 4(6.0) + 1(16.0) = 96 PUR PROJECTS: Pa		
W; 4(R) + 8/- (A) = 4(10.0) + 4(257) = 143 PUR W; 4(R) + 6/2 (C) = 4(6.0) + 1(18.0) = 96 PUR POPULATES:		MIND:
W, = 4(R) + 8/- (A) = 4(10.0) + 4(25.7) = 143 PUR W_ = 4(R) + 8/- (C) = 4(6.0) + 1(18.0) = 96 PUR PRICES (147- 96)(6) + 96 (44/4) = 2394 & PASE SHEAKS Vas, person = 2CP2) = 4788 &		
W; 4(R) + 8/- (A) = 4(10.0) + 4(257) = 143 PUR W; 4(R) + 6/2 (C) = 4(6.0) + 1(18.0) = 96 PUR POPULATES:		PRESCURES.
Property		W, 2 4(R) + 8/2 (A) = 4(10.0)+4(25.7)= 143 PC
Property		W1 = 4CD + 42 (c) 2 4(6.0) + 148.0) = 96 pu
Pash Site ares Pash		
Passe site ares Passe Pa		
Pash Site ares Pash		- Perces S!
Pash Site ares Pash		P= 143 (14/2)= 1001#
RASP SHEAKS Vas, Fer = 2 CED 2 4788 14 Vas, Fer = 2 (CED) 2 7202 16 Vas, Sec 5 = 2 (CED) 2 7202 16 Vas, Sec 5 = 2 (CED) 2 7202 16 Vas, Sec 5 CED		12 = (43-96)(6)+96 (44/2) = 239412
MIND CONTROLS ONFER SEISMIC FXTH DIFFECTIONS SEISMIC: NRS, SEUS Z CS W C32 (P/2) SNS = 0.727 [22 6.5 1 = 1.0 2 0.12 W WELGHTS, W. W= 2008 = (14x4a)(15) = 9240 4 PLOUR = 2008 = (14x4a)(15) = 9240 th WALL = (44x2)(15) = 9240 th WALL = (44x2)(15) = 9240 th		
-: MIND CONTROLS ONFER SEISMIC FORTH DIRECTIONS SEISMIC: NRS, SEUS Z CS IN C32 (P/2) SDS (P/2) S		
-: MIND CONTROLS ONFER SEISMIC FORTH DIRECTIONS SEISMIC: NRS, SEUS Z CS IN C32 (P/2) SDS (P/2) S		BASB SHEAKS
-: MIND CONTROLS ONFER SEISMIC FORTH DIRECTIONS SEISMIC: NRS, SEUS Z CS IN C32 (P/2) SDS (P/2) S		Vac z 2-CE) 2 47 858 R
-: MIND CONTROLS ONFER SEISMIC FORTH DIRECTIONS SEISMIC: NRS, SEUS Z CS IN C32 (P/2) SDS (P/2) S		113778
SEISMIC) NRS, SFUS 2 Cg W C2 505 (P/2) Sps = 0.727 [2= 6.5 E= 1.0 2 0.112 W WEIGHTS, W. W= 12-WP= (14x44)(15) = 92-40 4 PICON-2 = 97-40 th WHU2 (44x2X'97)(405P) = 92-60		1 196, 37) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SEISMIC NRS, SFUS = Cold Color Specific Cold Color Color Color		MIND CONTROLL DIE D. SEISING BYTH DIDE CTIONS
NRS, SFUS 2 CS W C32 (P/2) Sps 2 0.727 [22 6.5] E = 1.0 2 0.124 E (6.5) = 0.112 WELLAHTS, LU: W= 12 wp = (14x44)(15) 2 9240 4 PLOWE = (14x44)(15) 2 9240 th WALLE (44x2X(17))(405) 2 9240 0		11. ((()) () () () () () () ()
NRS, SFUS 2 CS W C32 (P/2) Sps 2 0.727 [22 6.5] E = 1.0 2 0.124 E (6.5) = 0.112 WELLAHTS, LU: W= 12 wp = (14x44)(15) 2 9240 4 PLOWE = (14x44)(15) 2 9240 th WALLE (44x2X(17))(405) 2 9240 0		· ceresses
Z 0.1727 Z 6.5 Z 6		
		YRS, SFUS 2 CS CS SPS
		(P/E) (2727
$\frac{z \circ .112 \text{ W}}{z \circ .724} = 0.112$ $\frac{z \circ .112 \text{ W}}{(6.5)}$ WEIGHTS, WI: $W = 2 \cos x = (14x44)(15) = 9240 \text{ H}}{(15)^2 \circ 9240 \text{ H}}$ $\frac{z \circ .112 \text{ W}}{(15)} = 9240 \text{ H}}{(15)^2 \circ 9240 \text{ H}}$ $\frac{z \circ .112 \text{ W}}{(15)} = 9240 \text{ H}}{(15)^2 \circ 9240 \text{ H}}$ $\frac{z \circ .112 \text{ W}}{(15)} = 9240 \text{ H}}{(15)^2 \circ 9240 \text{ H}}$ $\frac{z \circ .112 \text{ W}}{(15)} = 9240 \text{ H}}{(15)^2 \circ 9240 \text{ H}}$ $\frac{z \circ .112 \text{ W}}{(15)^2 \circ 9240 \text{ H}} = 9240 \text{ W}}{(15)^2 \circ 9240 \text{ H}}$ $\frac{z \circ .112 \text{ W}}{(15)^2 \circ 9240 \text{ H}} = 9240 \text{ H}}{(15)^2 \circ 9240 \text{ H}}$ $\frac{z \circ .112 \text{ W}}{(15)^2 \circ 9240 \text{ H}} = 9240 \text{ H}}{(15)^2 \circ 9240 \text{ H}}$ $\frac{z \circ .112 \text{ W}}{(15)^2 \circ 9240 \text{ H}} = 9240 \text{ H}}{(15)^2 \circ 9240 \text{ H}}$ $\frac{z \circ .112 \text{ W}}{(15)^2 \circ 9240 \text{ H}} = 9240 \text{ H}}{(15)^2 \circ 9240 \text{ H}} = 9240 \text{ H}}$		
$\frac{20.112 \text{ W}}{20.15} = 0.112$ $\frac{20.112 \text{ W}}{100}$ $\frac{20.112 \text{ W}}{100} = \frac{14x44}{100} = \frac{14x44}{100}$		
WEIGHTS, W: W= 12wp= (14x44)(15) = 9240 # 72880 # PLEUR = 29240 # WALLE (44x2X19/2)(6105) = 9260)		0.721 5 1.0
WEIGHTS, W: W= 12wp= (14x44)(15) = 9240 # 72880 # PLEUR = 29240 # WALLE (44x2X192)(605P) = 9260		(6.5) = 0.1(2
W= 12008= (14x44)(15) = 9240 # { 22880 # PLEUR = = 9740 # WALL = (44x2X(1/2)(1008) = 9260)		†
H= 12 cop= (14x44)(15) = 9240 # (27880 # 12 140 # (27880 # (27880) = 9260 # (27880 # (27880) = 9260 # (27880) = 7562 # (27880) # (27880		WRIGHTS, W.
(PCCOR) = 2 9240 th (MALL? (44x2X'9/2)(1015F) = 4260) (12)15E15 = 0.112 (22860) = V5(2 th (CULTIMATE) 2562/14 = 1830 th (ALLOURAGE)		W= 12WR= (14x44)(15) = 9240 4 (22880 4
MAUZ (44x2X 192) 40 psp.) = 4260) MB), sens = 0.112 (22860) = V562 to CALLOURATE) 2562/14 = 1830 to CALLOURATE)		Prom 2 29240 th
113) 15R15 2 0.112 (22860) = V562 th CULTIMATE) 2564,4 2 1830 th CALLOURAGE)		WALL (44x 2 X 192) 40 psr) = 9260)
72504,4 2 1830 # CALLOURARA)		113) 15 R13 2 0. 112 (22860) = 25(24 CLITIMATE)
		7250714 = 1830 # CALLOWARF)

CLIENT		v	VOLF INDUSTRIES
PROJECT	T		MODEL E (14x44)
BY			JULY 31, 2018
PROJECT NO			54.8 OF

11815 NE 113th St, Ste. 104 • Vancouver, WA 98662 Office 360.883.5331 • Wancouver, WA 98662	_
<u>ra</u>	
SHEARINGUS:	
- Mar VIII	
	427 2 441
Vizz 28 pcx	Lyon 10 = 36'
	1to 2 41 1to 2 41 Sale 6100, /240 PUR_TYPE A
	1762 4
1200 = 31 PIR Friup = 2446	Sde 6"00, /240 PUR-TYPE A
Fr, up = 2446	No HULDOWAS REGID
where will	
F= 1001 H	LTOT 2 441
Nw2 441	Lsong 2 231
	H+2 10
	140= 71
VANOT , 76 PCF	8de 6"01./200 PUZ TYPES A
Vino 76 pce Priup - 764 te	We HOLDOM AS BEDIN
mare was	
Fige 7394 #	Louis 14
Vw2 266 124	4-2 126" How 12 126"
	A-2 3
	H+2 1'6"
12252 2CG pur	8de 4100,/380 pur typs B
27, up = 2394 #	1+1142-5052,5/3075- +1pt 17
MAU MBI	
長223942	
Viv = 342 PCP	Loron 3 110'
	Lew 1, 2 -11
	11-2 0'
	H= 21
17 - 393 812	LTOP 2 10' LSOLID 2 71 HTO 2 9' 140 = 3' Sed e 4" oc. /380 mor - Trope 13 HDW 4-50525/417652 - Trope 1
Varst 2 393 PUR Pr, up = 353 & #	110 1- 10 10 10 10 10 10 10 10 10 10 10 10 10
T7, Wp 132 / W	(1+1/14 5-3) S G C / I/3 S R - 1 S PE I

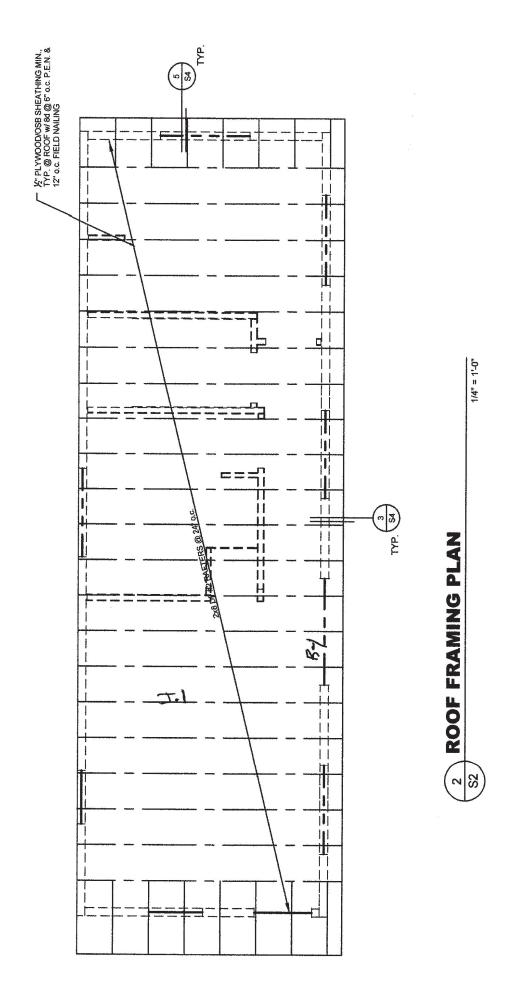

CLIENT		14	OLF INDUSTRIES
PROJECT	TI		MODEL E (14x44)
	JES		JULY 31, 2018
			X &4 OF

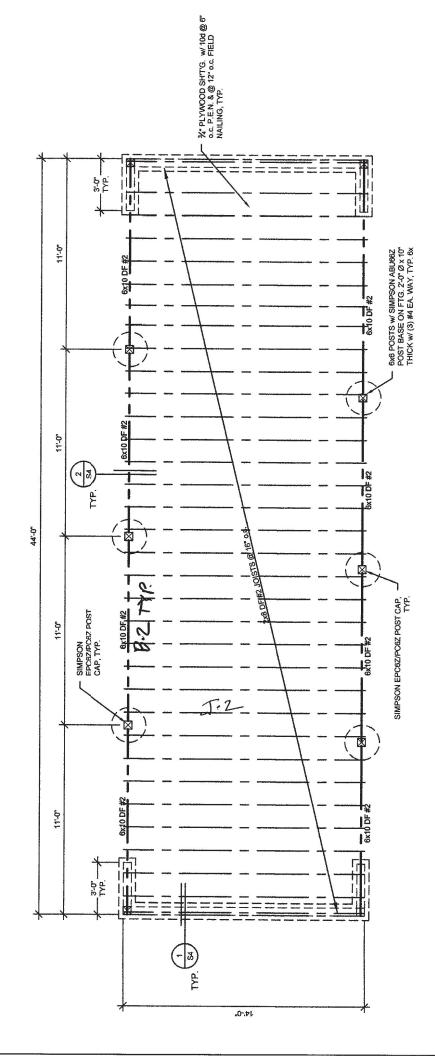

STRU			PR	OJECT NO	D	1	8-081	SHE	ET_LE	X 84	<u>►</u> OF			
11815 NE 113th St, Ste Office 360.883.5331	. 104 • Vancouver, • Mobile 360.	WA 98662 901.6463											_	
4				· · · · · · · · · · · · · · · · · · ·			i :	1 ;						
		their	3' SEC	CTLUMS	012 5	6452A4	WALL	L Ce	ن ا	26	MA	K 511	(کُم	
			Fi= 10							i.				
			luz	4 3	26									
			Vwz.					ø l .	المها				ع مدهد	-
								801						
		O/I	FIRTUN	min's	- A 3	CFROR	it was	u hi	on-st	CASE	ي سا	16' 77	ш и	AU
			OTMZ	1001	(10) 2	- 1001	0 * 2	6 = 5	7005	#				
			P. M. 2	we	(14/2	.H)(15)=	120	pup	ζ.	77.(1	عی ما د		
			P.M.Z		MAC	LZ	10 (IV)	2 100	ar	- 1				
				P-	541	4	MAL	d La	12)	9				
				М	2 17	251	3)2	TIL 751	70	62	1.0	lk-		
				112		73 (ردی ص			1. 3			
			r.	1-3				/ a						
			FTIMP	2 70	3 5 - L	200	7 (1)				. /			ļ
					>			077	<u> 7另一。</u>	705 Z	25/	2275	<u>*-T6</u>	152
														ļ
THE PARTY OF THE P		THE PARTY OF THE P												
														1
							7 P. 1							ļ
														-
														<u> </u>
										<u> </u>				
10 mm m m m m m m m m m m m m m m m m m								1				And the second second		
														-
											-			ļ
														-
		· · · · · · · · · · · · · · · · · · ·	iiiiii								· · · · · · · · · · · · · · · · · · ·		***************************************	
								9						

IBC Shearwall Design - PERFORATED SHEARWALL per 2305.3.7.2

Table 2305.3.7.2 Shear Resistance Adjustment Factor (Co)

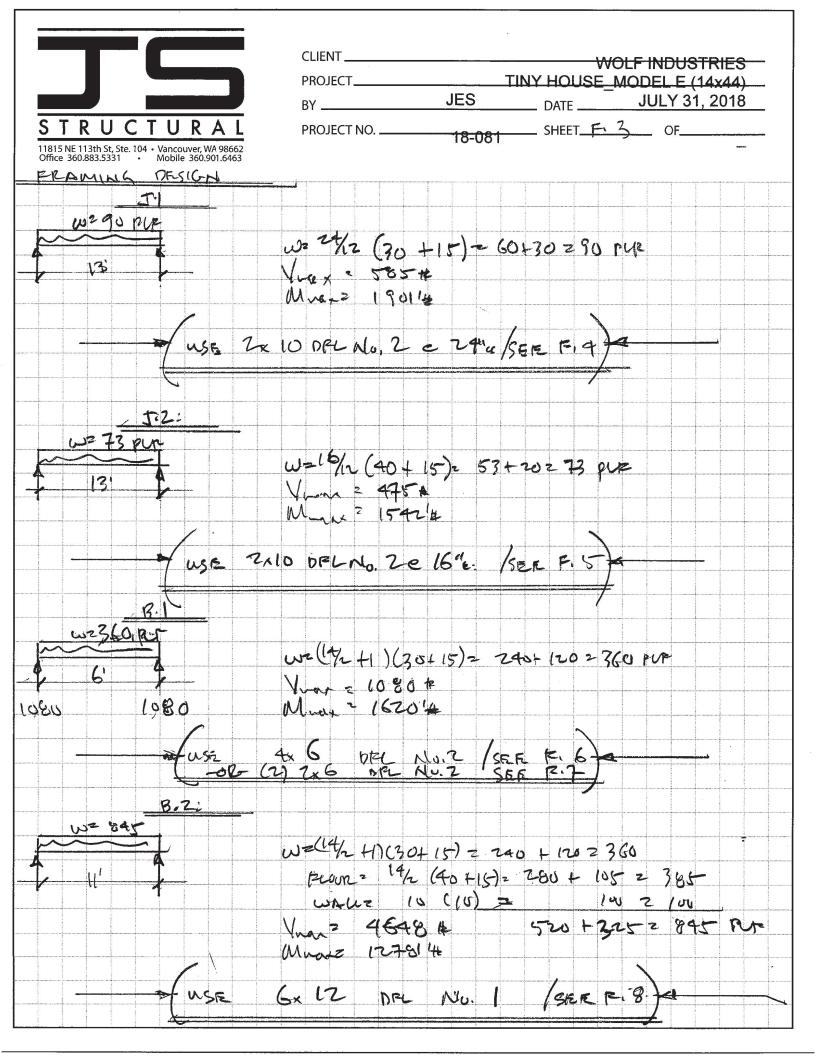
	T	Maximum Opening Height						
% Full Ht Sheathing	33% H/3	50% H/2	67% 2H/3	83% 5H/6	100% H			
10%	1	0.69	0.53	0.43	0.36			
20%	1	0.71	0.56	0.45	0.38			
30%	1	0.74	0.59	0.49	0.42			
40%	1	0.77	0.63	0.53	0.45			
50%	1	0.8	0.67	0.57	0.5			
60%	1	0.83	0.71	0.63	0.56			
70%	1	0.87	0.77	0.69	0.63			
80%	1	0.91	0.83	0.77	0.71			
90%	1	0.95	0.91	0.87	0.83			
100%	1	1	1	1	1			




Wind (W) or Seimic (S) Controls?	W	100				
Maximum Shearwall Aspect Ratio	3.5	7	y effects.			
	Full He	ull Height of Wall (ft)				
	. 8	9	10	11	12	
Min. Width of Shearwall Segment	2.29	2.57	2.86	3.14	3.43	

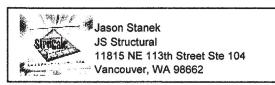
	Shear	Height of	Total Length	Sum of Full	Max Opening	% Full	% Max		Unit		Uplift @	
		Wali⁴	of Wali	Height Sheath.	Height	Height	Opening		Shear ³		Wall End	
Wail	V	н	L	ΣLJ	Ho	Sheathing	Height	Co	v	Shearwall	l r l	Holdown ²
Identification	(lb)	(ft)	(ft)	(ft)	(ft)	%	%		(plf)	Type ¹	(lb)	
Wall W1	1,001	8	44	36	4.00	0.82	0.50	0.91	31	Α	244	CORNER DETAIL
Wall W2	1,001	10	44	23	7.00	0.52	0.70	0.57	76	Α	764	CORNER DETAIL
Wall WA	2,394	9	14	9	1.50	0.64	0.17	1	266	В	2394	MSTC40/HDU2-SDS2.5
Wall WB	2,394	9	10	7	3.00	0.70	0.33	0.87	393	8	3538	MSTC52/HDU4-SDS2.5
						#DIV/0!	#DIV/0!	####	#DIV/01		#DIV/01	
						#DIV/0!	#DIV/0!	####	#DIV/01		#DIV/01	
	ļ					#DIV/0!			#DIV/0!		#DfV/01	
						#DIV/0!	#DIV/0!	####	#DIV/01		#DfV/0!	
						#DIV/0!	#DIV/0!	####	#DIV/01		#DfV/01	
						#DIV/0!			#DIV/01		#DIV/01	
						#DIV/0!			#DIV/01		#DfV/01	
						#DIV/0!	#DIV/0!	####	#DIV/01		#DIV/01	

Perforated Shearwall Notes


- 1 See Attached Shearwall Schedule
- ² See Attached Holdown Schedule
- ³ Maximum Allowable Shear shall not exceed 490 plf.
- ⁴ Perforated Shearwall shall not exceed 20' in height.
- ⁵ A perforated shearwall segment shall be located at each end of shearwall

FOUNDATION/FLOOR FRAMING PLAN

1/4" = 1'-0"



Location: J-1 Roof Rafter

[2015 International Building Code(2012 NDS)]

1.5 IN x 9.25 IN x 15.0 FT (14 + 1) @ 24 O.C.

#2 - Douglas-Fir-Larch - Dry Use Section Adequate By: 5.1% Controlling Factor: Moment

StruCalc Version 9.0.2.5

8/2/2018 11:50:55 AM

DEFLECTIONS	C	enter		Right
Live Load	0.35	IN L/498	0.00	IN 2L/14460
Dead Load	0.18	in	0.00	in
Total Load	0.53	IN L/330	0.00	IN 2L/Infinity

Live Load Deflection Criteria: L/360 Total Load Deflection Criteria: L/240

RAFTER REACTIONS			
	LOADS	REACTIONS	
Upper Live Load @ A	210 plf	420 lb	
Upper Dead Load @ A	108 plf	215 lb	
Upper Total Load @ A	318 plf	635 lb	
Lower Live Load @ B	241 plf	482 lb	
Lower Dead Load @ B	124 plf	248 lb	
Lower Total Load @ B	365 plf	730 lb	
L			

RAFTER SUPPORT DATA A B Bearing Length 0.68 in 0.78 in

RAFTER DATA	Inte	erior	E	ave	-
Span Length	14	ft	1	ft	
Rafter Pitch			3	:12	
Roof sheathing ap	plie	d to	top	of jo	pists-top of rafters fully braced.
Roof Duration Fac	tor	1.	15		
Peak Notch Depth	f	0.0	00		
Base Notch Depth	1	0.	00		

MATERIAL PROPERTIES

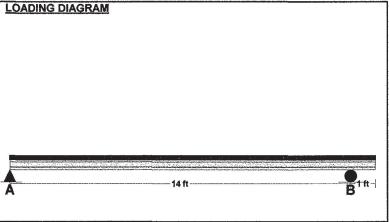
#2 - Douglas-Fir-Larch

	Base '	Values	Adju	sted	
Bending Stress:	Fb =	900 p	si Fb'=	1309 psi	
	Cd=1.15	CF=1.1	0 Cr=1.15		
Shear Stress:	Fv =	180 p	si Fv'=	207 psi	
	Cd=1.15				
Modulus of Elasticity:	E =	1600 k	si E'=	1600 ksi	
Comp. to Grain:	Fc-1=	625 p	si Fc-1'=	625 psi	

Controlling Moment: 2220 ft-lb

7.004 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

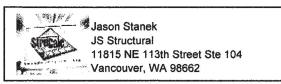

Controlling Shear: -559 lb

NOTES

At a distance d from right support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2, 3

Comparisons with required sections:	Reg'd	Provided
Section Modulus:	20.35 in3	21.39 in3
Area (Shear):	4.05 in2	13.88 in2
Moment of Inertia (deflection):	72.02 in4	98.93 in4
Moment:	2220 ft-lb	2334 ft-lb
Shear:	-559 lb	1915 lb


4					
I	RAFTER LOADING	 			
I	Uniform Roof Load	ing			
I	Roof Live Load:	LL =	30	psf	
I	Roof Dead Load:	DL =	15	psf	
l	Slope Adjusted Spa	ans And Loads			
I	Interior Span:	L-adj =	14.43	ft	
I	Eave Span:	L-Eave-adj =	1.03	ft	
l	Rafter Live Load:	wL-adj =	56	plf	
ı	Eave Live Load:	wL-Eave-adj =	56	plf	
I	Rafter Dead Load:	wD-adj =	29	plf	
l	Rafter Total Load:	wT-adj =	86	plf	
ı	Eave Total Load:	wT-Fave-adi =	86	plf	

Location: J-2 Floor Joist

[2015 International Building Code(2012 NDS)]

1.5 IN x 9.25 IN x 14.0 FT @ 16 O.C.

#2 - Douglas-Fir-Larch - Dry Use Section Adequate By: 13.0% Controlling Factor: Moment

of

StruCalc Version 9.0.2.5

8/2/2018 11:50:50 AM

 DEFLECTIONS
 Center

 Live Load
 0.20
 IN L/841

 Dead Load
 0.07
 in

 Total Load
 0.27
 IN L/612

Live Load Deflection Criteria: L/480 Total Load Deflection Criteria: L/360

 REACTIONS
 A
 B

 Live Load
 373 lb
 373 lb

 Dead Load
 140 lb
 140 lb

 Total Load
 513 lb
 513 lb

 Bearing Length
 0.55 in
 0.55 in

 SUPPORT LOADS
 A
 B

 Live Load
 280 plf 280 plf

 Dead Load
 105 plf 105 plf

 Total Load
 385 plf 385 plf

MATERIAL PROPERTIES

#2 - Douglas-Fir-Larch

Bending Stress: Base Values Adjusted

Bending Stress: Fb = 900 psi Fb' = 1139 psi Cd=1.00 CF=1.10 Cr=1.15

Shear Stress: Fv = 180 psi Fv' = 180 psi Cd=1.00

Modulus of Elasticity: E = 1600 ksi E' = 1600 ksi Comp. $^{\perp}$ to Grain: $Fc - ^{\perp} = 625 \text{ psi}$ $Fc - ^{\perp} = 625 \text{ psi}$

Controlling Moment: 1797 ft-lb 7.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: 462 lb

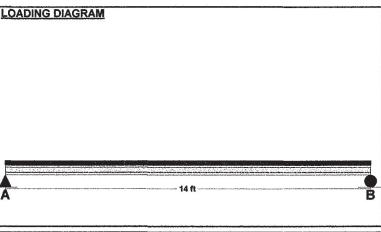
At a distance d from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections: Reg'd Provided Section Modulus: 18.94 in3 21.39 in3 Area (Shear): 3.85 in2 13.88 in2 Moment of Inertia (deflection): 84.88 in4 144.23 in4 Moment: 1797 ft-lb 2029 ft-lb Shear: 462 lb 1665 lb

Decking Information

Plywood Thickness: T = 3/4 in Plywood Is Glued:

Moment of Inertia Calculations For Glued Floor:


Joist Area:

A-joist = 13.88 IN2

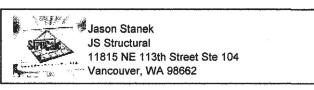
Pływood Area: A-ply = 2.08 IN2

Section Centroid: C = 5 IN ABOVE BASE

Moment of Inertia (deflection): I-comb = 144 IN4

JOIST DATA	Сe	nter
Span Length	14	ft
Unbraced Length-Top	0	ft
Unbraced Length-Bottom	0	ft
Floor sheathing applied to to	op o	f joists-top of joists fully braced.
Floor Duration Factor 1.00)	

				1.5	 	
JOIST LOADING						
Uniform Floor Loading		Cent	er			
Live Load	LL =	40	psf			
Dead Load	DL =	15	psf			
Total Load	TL =	55	psf			
TL Adi. For Joist Spacing	a wT =	73.3	plf			


Location: B-1

Multi-Loaded Multi-Span Beam

[2015 International Building Code(2012 NDS)]

 $3.5 \text{ IN} \times 5.5 \text{ IN} \times 6.0 \text{ FT}$

#2 - Douglas-Fir-Larch - Dry Use Section Adequate By: 20.7% Controlling Factor: Moment

page of

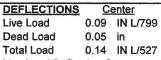
StruCalc Version 9.0.2.5

Uniform Live Load

Beam Self Weight

Total Uniform Load

Uniform Dead Load


240 pif

120 plf

364 plf

4 plf

8/2/2018 11:50:58 AM

Live Load Deflection Criteria: L/360 Total Load Deflection Criteria: L/240

REACTIONS	Α	<u>B</u>
Live Load	720 lb	720 lb
Dead Load	373 lb	373 lb
Total Load	1093 lb	1093 lb
Bearing Length	0.50 in	0.50 in
Total Load	1093 lb 0.50 in	1093 lb

BEAM DATA	Center	
Span Length	6 ft	
Unbraced Length-Top	0 ft	
Unbraced Length-Bottom	6 ft	
Live Load Duration Factor	1.15	
Notch Depth	0.00	

MATERIAL PROPERTIES

#2 - Douglas-Fir-Larch

		Base	e Values	Ad	ljusted
Bending Stress:	-	Fb =	900 psi	Fb' =	1346 psi
		Cd=1.1	5 CF=1.30		

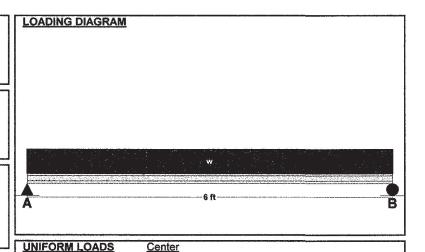
Shear Stress: Fv = 180 psi

Fv = 180 psi Fv' = 207 psi

Cd=1.15

Modulus of Elasticity: E = 1600 ksi E' = 1600 ksi Comp. $^{\perp}$ to Grain: Fc - $^{\perp}$ = 625 psi Fc - $^{\perp}$ ' = 625 psi

Controlling Moment: 1639 ft-lb 3.0 Ft from left support of span 2 (Center Span)


Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: 940 lb

At a distance d from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Reg'd	Provided
Section Modulus:	14.62 in3	17.65 in3
Area (Shear):	6.81 in2	19.25 in2
Moment of Inertia (deflection):	22.12 in4	48.53 in4
Moment:	1639 ft-lb	1979 ft-lb
Shear:	940 lb	2657 lb

Location: B-1 2

Multi-Loaded Multi-Span Beam

[2015 International Building Code(2012 NDS)]

(2) 1.5 IN x 5.5 IN x 6.0 FT #2 - Douglas-Fir-Larch - Dry Use Section Adequate By: 3.7% Controlling Factor: Moment

StruCalc Version 9.0.2.5

Uniform Dead Load

Beam Self Weight

Total Uniform Load

120 plf

364 plf

4 plf 8/2/2018 11:51:00 AM

DEFLECTIONS Center Live Load 0.11 IN L/685 Dead Load 0.05 in **Total Load** 0.16 IN L/452

Total Load Deflection Criteria: L/240 Live Load Deflection Criteria: L/360

REACTIONS В A Live Load 720 lb 720 lb Dead Load 371 371 lb Ib Total Load 1091 lb 1091 lb Bearing Length 0.58 in 0.58 in

BEAM DATA Center Span Length 6 ft Unbraced Length-Top 0 ft Unbraced Length-Bottom 6 ft Live Load Duration Factor 1.15 Notch Depth 0.00

MATERIAL PROPERTIES

#2 - Douglas-Fir-Larch

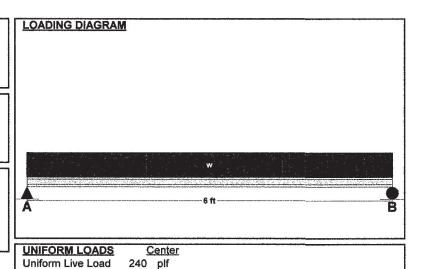
Base Values Adjusted Bending Stress: Fb = 900 psi Fb' = 1346 psi Cd=1.15 CF=1.30

Shear Stress: Fv = 180 psi 207 psi

Cd=1.15

Modulus of Elasticity: E = 1600 ksi E' = 1600 ksi Comp. [⊥] to Grain: $Fc-\bot = 625 psi$ Fc-1= 625 psi

Controlling Moment: 1636 ft-lb 3.0 Ft from left support of span 2 (Center Span)

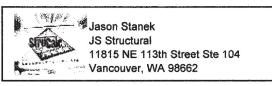

Created by combining all dead loads and live loads on span(s) 2 938 lb

Controlling Shear:

At a distance d from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections: Rea'd **Provided** Section Modulus: 14.59 in3 15.13 in3 Area (Shear): 6.8 in2 16.5 in2 Moment of Inertia (deflection): 22.08 in4 41.59 in4 Moment: 1636 ft-lb 1696 ft-lb Shear: 938 lb 2277 lb


Location: B-2

Multi-Loaded Multi-Span Beam

[2015 International Building Code(2012 NDS)]

5.5 IN x 11.5 IN x 11.0 FT

#1 - Douglas-Fir-Larch - Dry Use Section Adequate By: 20.8% Controlling Factor: Moment

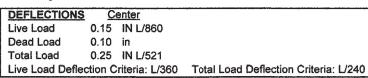
520 plf

325 plf

14 plf

859 plf

StruCalc Version 9.0.2.5


Uniform Live Load

Beam Self Weight

Total Uniform Load

Uniform Dead Load

8/2/2018 11:50:53 AM

REACTIONS	Α		В		
Live Load	2860	lb	2860	lb	
Dead Load	1863	lb	1863	lb	
Total Load	4723	lb	4723	lb	
Bearing Length	1.37	in	1.37	in	

BEAM DATA	Center
Span Length	11 ft
Unbraced Length-Top	0 ft
Unbraced Length-Bottom	11 ft
Live Load Duration Factor	1.15
Notch Depth	0.00

MATERIAL PROPERTIES

#1 - Douglas-Fir-Larch

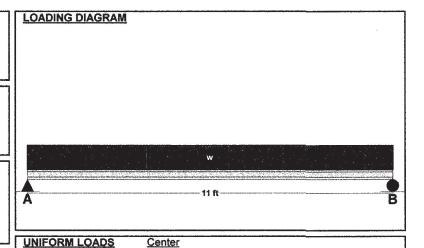
•	Base Values		<u>Adjusted</u>	
Bending Stress:	Fb =	1350 psi	Fb' =	1553 psi
	Cd=1.15 CF=1.00			

Shear Stress: Fv = 170 psi Fv' = 196 psi

Cd=1.15

Modulus of Elasticity: E = 1600 ksi E' = 1600 ksi Comp. \perp to Grain: Fc \perp = 625 psi Fc \perp = 625 psi

Controlling Moment: 12988 ft-lb 5.5 Ft from left support of span 2 (Center Span)


Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: 3967 lb

At a distance d from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Reg'd	Provided
Section Modulus:	100.39 in3	121.23 in3
Area (Shear):	30.44 in2	63.25 in2
Moment of Inertia (deflection):	321.4 in4	697.07 in4
Moment:	12988 ft-lb	15684 ft-lb
Shear:	3967 lb	8244 lb

